<|lI!

z/0S Communications Server

IP CICS Sockets Guide

Version 2 Release 2

SC27-3649-01

Note:
Before using this information and the product it supports, be sure to read the general information under

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS), and to subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. You can send us comments electronically by using one of the following methods:

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
[http: / /www.ibm.com /systems/z/0s/zos/webgs.htm]|

If you would like a reply, be sure to include your name, address, and telephone number. Make sure to include the
following information in your comment or note:

+ Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Figures
Tables

About this document
Who should read this document .
How this document is organized .
How to use this document . .
Determining whether a pubhcatlon 1s current
How to contact IBM service.
Conventions and terminology that are used in th1s document
How to read a syntax diagram
Prerequisite and related information

Summary of changes for IP CICS Sockets Guide .
Changes made in z/OS Version 2 Release 2 .
Summary of changes for z/OS Version 2 Release 1

Chapter 1. Introduction to CICS TCP/IP
TCP/IP internets . .
TCP/IP Services Telnet support
CICS TCP/IP client and server processing
TCP/IP TCP, UDP, and IP protocols
The socket API communication functions .
Programming with sockets.
A typical client-server program flow chart
Concurrent and iterative servers .
Basic socket calls
Server TCP/IP calls.
Client TCP/IP calls.
Other socket calls used for servers.
CICS TCP/IP requirements .
CICS TCP/IP components
Summary of what CICS TCP/IP provrdes
The socket calls . L.
The IBM listener.
CICS TCP/IP conversion routmes
Rules for configuring the IBM-supplied hstener for IPV6
Monitoring with CICS Explorer. .o

Chapter 2. Setting up and conflgurlng CICS TCP/IP
Modifications to the startup of CICS .
Modifying CICS startup (MVS JCL)
Defining CICS TCP/IP resources
Transaction definitions for CICS

Using storage protection when running with CICS 3. 3 0 or later .

Required program definitions to support CICS TCP/IP.
Updates to file definitions for CICS TCP/IP
Defining the TCPM transient data queue for CICS TCP / IP
CICS monitoring . o
CICS program list table
System recovery table . .
CICS TCP/IP security con51derat10r1s
Modifying data sets for TCP/IP services.

© Copyright IBM Corp. 2000, 2015

. Xiii

. XVii

. Xix

. Xix
. Xix
. XX
. XX
. Xxi
. xxi
. Xxii

. XXVi

. XXXi
. XXX1
. xxxd

O OO W WINNN =,

iii

hlq. PROFILE.TCPIP data set .

hlg. TCPIP.DATA data set . . .
Adding a z/OS UNIX System Serv1ces segment .
Configuring the CICS TCP/IP environment.

Building the configuration data set with EZACICD

Customizing the configuration transaction (EZAC) .
z/0S UNIX System Services environment effects on IP CICS sockets .

Chapter 3. Configuring the CICS Domain Name Server cache .

CICS DNS cache function components
VSAM cache file.
EZACICR macro.
EZACIC25 module .
How the DNS cache handles requests
Using the DNS cache .
Step 1: Create the 1n1t1a11zat10n module
Step 2: Define the cache file to CICS.
Step 3: Issue EZACIC25 . .
HOSTENT structure .

Chapter 4. Managing IP CICS sockets .
Starting and stopping CICS automatically .
IP CICS socket interface management

Using the INQUIRE function .

Using the SET function .

Using the START function .

Using the STOP function .
Abbreviating the EZAO transactlon parameters .
Starting and stopping CICS TCP/IP with program link

Handling task hangs . .

Chapter 5. Writing your own listener
Prerequisites for writing your own listener .
Using IBM environmental support for user-written hsteners

Chapter 6. Writing applications that use the IP CICS sockets API .

Writing CICS TCP/IP applications .

The client-listener-child-server application set

Writing your own concurrent server.

The iterative server CICS TCP/IP apphcatlon

The client CICS TCP/IP application . .

Defining socket addresses . .

Address family (domain) support

IP address allocation .

Port number identification .

Address structures
MVS address spaces relatlonshlp between TCP / IP and CICS
TCP/IP network byte ordering convention
GETCLIENTID, GIVESOCKET, and TAKESOCKET
CICS application transaction (IBM listener)

IBM listener input format .o .

Examples of client input and the 11stener processmg

IBM listener output format . .

Writing your own security or transactlon hnk modules for the hstener .
Threadsafe considerations for IP CICS sockets applications .
How CICS selects an L8 mode TCB .

Data conversion routines . .
Application Transparent Transport Layer Securlty .
Example of inbound AT-TLS support
Example of outbound AT-TLS support .

iV z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

. 50
. 51
. 52
. 52
. 52
. 68
. 96

. 97

. 98
. 98
. 98
. 98
. 99
. 99

. 100
. 102
. 103
. 104

. 107
. 107
. 108
. 109
. 112
. 115
. 118
. 121
. 122
. 123

. 125
. 125
. 125

. 129
. 129
. 130
. 133
. 134
. 135
. 136
. 137
. 137
. 137
. 137
. 138
. 139
. 140
. 141
. 142
. 143
. 143
. 152
. 156
. 160
. 161
. 161
. 162
. 163

Chapter 7. C language application programming 165
Csocket library 165
C socket compilation. .1le6
Changes to DFHYITDL« .« .« .« .«16
Compile your program .1le6
Structures used in socket calls. L . L L. L o 1e7
The ERRNO variable.17
Csocket call guidance ... 10
accept()call L o L 0 Lo s I
bind() call L o ..o s
bind2addrsel() call. L . L 17
close() call Lo Lo e s a8
connect() call L L L L L L ..o 7s
fentl() call Lo L Lo L8
freeaddrinfo() call L L L L o L L L L 13
gai_strerror() call L oL 0L 1.2
getaddrinfo() call L L L o183
getclientid() call L L L L L L s 18
gethostbyaddr() call .. .19
gethostbyname() call . 000000000 19
gethostid() call L L L L L 192
gethostname() call. .19
getipv4sourcefilter() call .19
getnameinfo() call .19
getpeername() call. L L L L L L L L s s 7
getsockname() call. L L L L L L L L Lo 199
getsockopt(), setsockopt() calls. .200
getsourcefilter() call L . . L21
givesocket() call L L L L L L L L Lo ... 213
if freenameindex() call L . L. L . L L. 214
if indextoname() call. .215
if nameindex() call .215
if_ nametoindex() call. .2
inet_ntop()call L L L L e e ey
inet pton() call. L oL oL L. 218
inet6_is_srcaddr() call L 219
initapi() call L L L L e s s s
ioctl() call . . . Lo e e 222
listen() call L . L oL oo 225
read() call L L oL 226
recv() call. L 27
recvfrom() call L L . L oL Lo 228
select() call L L Lo Lo s u230
send()call23
sendto() call. L L L L.,
setipvdsourcefilter() call .. 236
setsockopt() call oL oL o237
setsourcefilter() call37
shutdown() call.238
socket() call L . L L oL oL oo L238
takesocket() call L . oL oL L0239
write() call L L L s s s s s 2
Address Testing Macros

Chapter 8. Sockets extended API. 1)
Environmental restrictions and programming requlrements for the Callable Socket API .2 16)
CALL instruction API 1o
Understanding COBOL, assembler and PL/ I call formats . 1
COBOL language call format .26
Assembler language call format L L L L L L L L L L L2447
PL/Ilanguage call format .248

Contents V

Converting parameter descriptions .
Error messages and return codes .
Code CALL instructions.
ACCEPT call
BIND call. ..
BIND2ADDRSEL call.
CLOSE call .
CONNECT call.
FCNTL call . .
FREEADDRINFO call
GETADDRINFO call .
GETCLIENTID call
GETHOSTBYADDR call .
GETHOSTBYNAME call.
GETHOSTID call .
GETHOSTNAME call
GETNAMEINFO call .
GETPEERNAME call .
GETSOCKNAME call
GETSOCKOPT call
GIVESOCKET call.
INET6_IS_SRCADDR call
INITAPI and INITAPIX calls
IOCTL call
LISTEN call .
NTOP call
PTON call
READ call
READV call .
RECV call
RECVFROM call
RECVMSG call .
SELECT call.
SELECTEX call .
SEND call
SENDMSG call .
SENDTO call
SETSOCKOPT call.
SHUTDOWN call .
SOCKET call
TAKESOCKET call
TERMAPI call .
WRITE call .
WRITEV call
Using data translation programs for socket call 1nterface

Data translation from ASCII and EBCDIC data notation .

Bit string processing .

Appendix A. Original COBOL application programmlng interface (EZACICAL)

Using the EZACICAL or Sockets Extended API .
COBOL compilation . o
The EZACICAL API . .
EZACICAL call format for COBOL .
EZACICAL call format for PL/T . . .
EZACICAL call format for assembler language .
COBOL and assembler language socket calls .
COBOL call for ACCEPT
COBOL call for BIND
COBOL call for CLOSE .
COBOL call for CONNECT.
COBOL call for FCNTL .

Vi z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

. 249
. 250
. 250
. 250
. 253
. 256
. 258
. 260
. 263
. 265
. 266
. 275
. 277
. 280
. 283
. 283
. 285
. 289
. 291
. 293
. 309
. 311
. 314
. 317
. 329
. 331
. 332
. 335
. 337
. 339
. 341
. 344
. 348
. 353
. 359
. 361
. 365
. 368
. 384
. 386
. 388
. 390
. 391
. 392
. 394
. 394
. 395

. 415
. 415
. 415
. 417
. 417
. 417
. 418
. 418
. 419
. 420
. 421
. 421
. 422

COBOL call for GETCLIENTID
COBOL call for GETHOSTID .
COBOL call for GETHOSTNAME
COBOL call for GETPEERNAME .
COBOL call for GETSOCKNAME
COBOL call for GETSOCKOPT
COBOL call for GIVESOCKET.
COBOL call for INITAPI.

COBOL call for IOCTL .

COBOL call for LISTEN .

COBOL call for READ

COBOL call for RECVFROM .
COBOL call for SELECT.

COBOL call for SEND

COBOL call for SENDTO
COBOL call for SETSOCKOPT
COBOL call for SHUTDOWN .
COBOL call for SOCKET

COBOL call for TAKESOCKET
COBOL call for WRITE .

Appendix B. Return codes.
Sockets return codes (ERRNOs)
Sockets extended ERRNOs .

Appendix C. GETSOCKOPT/SETSOCKOPT command values .

Appendix D. CICS sockets messages .

EZY1218—EZY1371 .
EZY1218E: mm/dd/yy hh:mm:ss PROGRAM progmmname DISABLED TRANID transactzonzd PARTNER INET
ADDR=inetaddress PORT=portnumber
EZY1219E: mm/dd/yy hh:mm:ss UNEXPECTED eventtype EVENT IN LISTENER tmnsactzomd FROM CLIENT IP
ADDRESS ipaddress PORT portnumber
EZY1220E: mm/dd/yy hh:mm:ss READ FAILURE ON CONFIGURATION FILE PHASE phase EIBRESPZ response
EZY1221E: mm/dd/yy hh:mm:ss CICS SOCKETS ENABLE FAILURE EIBRCODE BYTE2 = resp_code . .
EZY1222E: mm/dd/yy hh:mm:ss CICS/SOCKETS REGISTRATION FAILURE RETURN code= return_code
EZY1223E: mm/dd/yy hh:mm:ss CICS/SOCKETS ATTACH FAILURE RETURN CODE = return_code REASON
CODE = reason_code . . .o
EZY12241: mm/dd/yy hh:mm:ss CICS / SOCKETS INITIALIZATION SUCCESSFUL USING taskmg_method
EZY1225E: mm/dd/yy hh:mm:ss STARTBR FAILURE ON CICS/SOCKETS CONFIGURATION FILE PHASE=xx
EIBRESP2=rrrrrr o
EZY1226E: mm/dd/yy hh mm:ss READNEXT FAILURE ON CICS / SOCKETS CONFIGURATION FILE
PHASE=xx EIBRESP2=rrrrrr oL
EZY1227E: mm/dd/yy hh:mm:ss CICS/ SOCKETS INVALID LISTENER TRANID tmn .
EZY1228E: mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tran DISABLED .
EZY1229E: mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER TRANSACTION tran NOT AUTHORIZED.
EZY1246E: mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER PROGRAM ID mmmmmmmm INVALID .
EZY1247E: mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER PROGRAM ID mmmmmmmm DISABLED .
EZY1250E: mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER tran NOT ON CONFIGURATION FILE.
EZY1251E: mm/dd/yy hh:mm:ss CICS SOCKETS MODULE mmmmmmmm ABEND xxxx . .
EZY1252E: mm/dd/yy hh:mm:ss UNABLE TO LOAD EZASOH03 ERROR CODE-= error_code REASON CODE—
reason_code . S
EZY1253E: mm/dd/yy hh mim:ss CICS/ SOCKETS LISTENER tmn NOT ON CONFIGURATION FILE
EZY1254E: mm/dd/yy hh:mm:ss CACHE FILE ERROR RESP2 VALUE ****** CALL # * . .
EZY1255E: mm/dd/yy hh:mm:ss TEMPORARY STORAGE ERROR RESP2 VALUE ****** CALL # *.
EZY1256E: mm/dd/yy hh:mm:ss CICS SOCKETS INTERFACE NOT ENABLED PRIOR TO LISTENER STARTUP
EZY1258I: module ENTRY POINT IS address .
EZY1259E: mm/dd/yy hh:mm:ss IOCTL CALL FAILURE TRANSACTION tmnsuctzomd TASKID tasknumber
ERRNO=errno . . .

Contents

. 423
. 425
. 425
. 426
. 427
. 429
. 430
. 431
. 433
. 433
. 434
. 435
. 437
. 439
. 440
. 441
. 442
. 443
. 444
. 446

. 449
. 449
. 459

. 465

. 469
. 469

. 469

. 470
470

. 471
. 472

. 472
. 473

. 474

. 474
. 475
. 476
. 476
. 477
. 477
. 478
. 478

. 479
. 479
. 480

. 480
481

. 481

. 482

vii

EZY1260E: mm/dd/yy hh:mm:ss EZACIC03 ATTACH FAILED GPR15=xxxxxxxx ERRNO=errno TRAN=tran
TASK=cicstask . . .
EZY12611: mm/dd/yy hh:mm:ss EZACIC03 ATTACH SUCCESSFUL TCB ADDRESS tcbaddr TERM term
TRAN=tran TASK=cicstask . .
EZY1262E: mm/dd/yy hh:mm:ss GWA ADDRESS INVALID UEPGAA XXXXXXXX TRAN tmn TASK czcstask
EZY1263E: mm/dd/yy hh:mm:ss TIE ADDRESS INVALID UEPGAA=xxxxxxxx TRAN=tran TASK=cicstask .
EZY1264E: mm/dd/yy hh:mm:ss FLAG WORD ADDRESS INVALID UEPFLAGS= xxxxxxxx ERRNO=errno
TRAN=tran TASK=cicstask .

EZY1265E: mm/dd/yy hh:mm:ss CICS VERSION UNSUPPORTED GWACIVRM XXXX ERRNO errno TRAN tmn
TASK=cicstask . . S
EZY1267E: mm/dd/yy hh mim:ss ROUTING TASK FUNCTION INVALID UERTIFD—xx ERRNO—errno
TRAN=tran TASK=cicstask .

EZY1268E: mm/dd/yy hh:mm:ss SAVE AREA ADDRESS INVALID UEPHSMA XXXXXXXX ERRNO errno
TRAN=tran TASK=cicstask .

EZY1269E: mm/dd/yy hh:mm:ss PARM LIST ADDRESS INVALID GPRI XXXXXXXX ERRNO errno TRAN tmn
TASK=cicstask .

EZY1270E: mm/dd/yy hh Mmm:ss PARM nn ADDRESS INVALID ADDRESS XXXXXXXX ERRNO errno TRAN tmn

TASK=cicstask . .

EZY1271E: mm/dd/yy hh mim:ss TOKERR XXXXXXXX ERRNO errno TRAN tran TASK—czcstask

EZY1272E: mm/dd/yy hh:mm:ss INVALID SOCKET/FUNCTION CALL FUNCTION= xxxx ERRNO=errno
TRAN=tran TASK=cicstask . .
EZY1273E: mm/dd/yy hh:mm:ss TUCV SOCK / FUNC TABLE INVALID FUNCTION— XXXX ERRNO errno
TRAN=tran TASK=cicstask .

EZY1274E: mm/dd/yy hh:mm:ss INCORRECT EZASOKET PARM COUNT FUNCTION XXXX ERRNO errno
TRAN=tran TASK=cicstask .

EZY1275E: mm/dd/yy hh:mm:ss MONITOR CALLS NOT SUPPORTED UERTFID XX ERRNO—errno TRAN tmn
TASK=cicstask . . .
EZY1276E: mm/dd/yy hh Mim:ss EDF CALLS NOT SUPPORTED UERTFID XX ERRNO errno TRAN tmn
TASK=cicstask .

EZY12771: mm/dd/yy hh mm:ss EZACIC03 DETACHED TCB ADDRESS XXXXXXXX ERRNO errno TRAN—tmn
TASK=cicstask . .

EZY12781: mm/dd/yy hh:mm:ss EZACICO3 DETACH SUCCESSFUL TCB ADDRESS XXXXXXXX TRAN tmn
TASK=cicstask . .
EZY1279E: mm/dd/yy hh mim:ss INVALID SYNC PT COMMAND DISP—xx TRAN tmn TASK—czcstask
EZY1280E: mm/dd/yy hh:mm:ss INVALID RESYNC COMMAND DISP=xx TRAN=tran TASK=cicstask
EZY1282E: mm/dd/yy hh:mm:ss 10999 ABEND reasonxx .

EZY1285E: mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tmn NOT ON CONFIGURATION

FILE .

EZY1286E: mm/dd/yy hh mm:ss READ FAILURE ON CICS/ SOCKETS CONFIGURATION FILE
TRANSACTION= tran EIBRESP2= rrrrr

EZY1287E: mm/dd/yy hh:mm:ss EZYCIC02 GETMAIN FAILURE FOR VARIABLE STORAGE TRANSACTION—
tran EIBRESP2=rrrrr . . o
EZY1288E: mm/dd/yy hh:mm:ss CICS SOCKETS MODULE MmMmmmmmm ABEND aaaa .

EZY12891: mm/dd/yy hh:mm:ss CICS LISTENER TRANSACTION tran taskno TERMINATING . .
EZY12911: mm/dd/yy hh:mm:ss LISTENER TRANSACTION transactionid TASKID= taskno ACCEPTING
REQUESTS VIA PORT port .

EZY1292E: mm/dd/yy hh:mm:ss CANNOT START LISTENER TRUE NOT ACTIVE TRANSACTION tmn
TASKID= cicstask EIBRCODE BYTE3=rr

EZY1293E: mm/dd/yy hh:mm:ss INITAPI CALL FAILURE TRANSACTION tmn TASKID— czcstask ERRNO errno

EZY1294E: mm/dd/yy hh:mm:ss SOCKET CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO=
errno

EZY1295E: mm/dd/yy hh MM:SS BIND CALL FAILURE TRANSACTION tmn TASKID czcstask ERRNO— errno
EZY1296E: mm/dd/yy hh:mm:ss LISTEN CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO=
errno

EZY1297E: mm/dd/yy hh mMm:ss GETCLIENTID CALL FAILURE TRANSACTION tmn TASKID— czcstask

ERRNO=errno . .
EZY1298E: mm/dd/yy hh mm:ss CLOSE FAILURE TRANID— tran TASKID— Czcstask ERRNO— errmo .
EZY1299E: mm/dd/yy hh:mm:ss SELECT CALL FAILURE TRANSACTION= tran TASKID= xxxxx ERRNO—
errno

EZY1300E: mm/dd/yy hh mm:ss RECV FAILURE TRANSID— tmnsactzomd TASKID tasknumber ERRNO— errno
INET ADDR=inetaddress PORT=portnumber C e

viii

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

. 482

. 483
. 484
. 484

. 485

. 486

. 486

. 487

. 487

. 488
. 489

. 489

. 490

. 490

. 491
. 491
. 492
. 493

. 493
. 494

. 494

. 494
. 495
. 496
. 496
. 497

. 498

. 499
500

. 500
501

. 502

. 502
. 503

. 503

. 504

EZY1301E: mm/dd/yy hh:mm:ss CONNECTION CLOSED BY CLIENT TRANSACTION= transactionid PARTNER

INET ADDR= ipaddr PORT= port 505
EZY13021: mm/dd/yy hh:mm:ss READ TIMEOUT PARTNER INET ADDR— metuddress PORT portnumber

LISTENER TRANID= tran_id TASKID= task_id 505
EZY13031: mm/dd/yy hh:mm:ss EZACIC02 GIVESOCKET TIMEOUT TRANS transactzomd PARTNER INET
ADDR=inetaddress PORT=portnumber507
EZY1306E: mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmn IS NOT DEFINED TRANID tran
TASKID=xxxxxxxx. . . . 507
EZY1307E: mm/dd/yy hh:mm:ss MAXIMUM # OF SOCKETS USED TRANS tmn TASKID— czcstask ERRNO—

errno . . . 508
EZY1308E: mm/dd/yy hh mm:ss ACCEPT CALL FAILURE TRANSACTION tmn TASKID— czcstask ERRNO—

errnoD508
EZY1309E: mm/dd/yy hh mim:ss GIVESOCKET FAILURE TRANS tmnsactzomd TASKID tusknumber

ERRNO-=errno INET ADDR=inetaddress PORT=portnumber509
EZY1310E: mm/dd/yy hh:mm:ss IC VALUE NOT NUMERIC TRANID tmnsactlomd PARTNER INET
ADDR=inetaddress PORT=portnumberb10
EZY1311E: mm/dd/yy hh:mm:ss CICS TRANID tmnsuctzomd NOT AUTHORIZED PARTNER INET

ADDR=inetaddress PORT=portnumber51
EZY1312E: mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm CANNOT BE LOADED TRANID tmn
TASKID=cicstask 511
EZY1313E: mm/dd/yy hh:mm:ss LISTENER NOT AUTHORIZED TO ACCESS SECURITY EXIT MIMmMmMmmmim
TRANID= tran TASKID=xxxxxxxx . . . 512

EZY1314E: mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm IS DISABLED TRANID— tmn TASKID xxxxxxxx 512
EZY1315E: mm/dd/yy hh:mm:ss INVALID TRANSID transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber513
EZY1316E: mm/dd/yy hh:mm:ss TRANSID tmnsactlomd IS DISABLED PARTNER INET ADDR—metuddress
PORT=portnumberbl4
EZY1317E: mm/dd/yy hh:mm:ss TRANSID tmnsactzonzd IS NOT AUTHORIZED PARTNER INET

ADDR=inetaddress PORT=portnumber . . T
EZY1318E: mm/dd/yy hh:mm:ss TD START SUCCESSFUL QUEUEID— que . . 515
EZY1319E: mm/dd/yy hh:mm:ss QIDERR FOR TD DESTINATION queuename PARTNER INET ADDR metaddress
PORT=portnumberbl6
EZY1320E: mm/dd/yy hh:mm:ss I / O ERROR FOR TD DESTINATION queuename PARTNER INET

ADDRs=inetaddress PORT=portnumber 517
EZY1321E: mm/dd/yy hh:mm:ss LENGTH ERROR FOR TD DESTINATION queuename PARTNER INET
ADDR=inetaddress PORT=portnumber . . . 517
EZY1322E: mm/dd/yy hh:mm:ss TD DESTINATION queuename DISABLED PARTNER INET ADDR—metuddress
PORT=portnumberb518
EZY1323E: mm/dd/yy hh:mm:ss TD DESTINATION queuename OUT OF SPACE PARTNER INET

ADDR=inetaddress PORT=portnumber . . . 519
EZY1324E: mm/dd/yy hh:mm:ss TD START FAILED QUEUE ID—queuenume PARTNER INET ADDR—znetaddress
PORT=portnumber 520
EZY13251: mm/dd/yy hh:mm:ss START SUCCESSFUL TRANID tmnsactzomd PARTNER INET ADDR metaddress
PORT=portnumber 520
EZY1326E: mm/dd/yy hh:mm:ss START I/ (@) ERROR TRANID tmnsactzomd PARTNER INET ADDR—metaddress
PORT=portnumber . . . A |
EZY1327E: mm/dd/yy hh:mm:ss START TRANSACTION ID tmnsactzomd INVALID PARTNER INET
ADDR=inetaddress PORT=portnumber . . . 522
EZY1328E: mm/dd/yy hh:mm:ss START TRANSACTION ID tmnsactzomd NOT AUTHORIZED PARTNER INET
ADDR=inetaddress PORT=portnumber . . . 522
EZY1329E: mm/dd/yy hh:mm:ss START FAILED (99) TRANSID tmnsactzonzd PARTNER INET ADDR znetaddress
PORT=portnumber523
EZY1330E: mm/dd/yy hh:mm:ss IC START SUCCESSFUL TRANID tmnsactzomd PARTNER INET

ADDR=inetaddress PORT=portnumberb24
EZY1331E: mm/dd/yy hh:mm:ss IC START 1/O ERROR TRANID tmnsactzomd PARTNER INET

ADDR=inetaddress PORT=portnumber 525
EZY1332E: mm/dd/yy hh:mm:ss IC START INVALID REQUEST TRANID transactzomd PARTNER INET
ADDR=inetaddress PORT=portnumber 525
EZY1333E: mm/dd/yy hh:mm:ss IC START FAILED TRANID tmnsactzomd PARTNER INET ADDR metaddress
PORT=portnumber o)

Contents 1X

X

EZY1334E: mm/dd/yy hh:mm:ss INVALID USER TRANID=transactionid PARTNER INET ADDR = inetaddress
PORT = portnumber USERID = userid

EZY1335E: mm/dd/yy hh:mm:ss WRITE FAILED ERRNO errno TRANID tmnsactzomd PARTNER INET
ADDR=inetaddress PORT=portnumber .
EZY1336E: mm/dd/yy hh:mm:ss TAKESOCKET FAILURE TRANS transactzonzd TASKID tasknumber
ERRNO-=errno INET ADDR=inetaddress PORT=portnumber

EZY1337E: mm/dd/yy hh:mm:ss CICS IN QUIESCE, LISTENER TERMINATING TRANSID tmn TASKID—
cicstask

EZY1338E: mm/dd/yy hh mim:ss PROGRAM progmmname NOT FOUND TRANID tmnsactzomd PARTNER INET
ADDR=inetaddress PORT=portnumber .
EZY1339E: mm/dd/yy hh:mm:ss EXIT PROGRAM (EZACICOl) IS NOT ENABLED DISABLE IGNORED
TERM=term TRAN=tranxxx.

EZY1340E: mm/dd/yy hh:mm:ss API ALREADY QUIESCING DUE TO PREVIOUS REQ EZAO IGNORED
TERM=term TRAN=tranxxx. .
EZY1341E: mm/dd/yy hh:mm:ss API ALREADY IN IMMED MODE DUE TO PREV REQ EZAO IGNORED
TERM=term TRAN=tranxxx.

EZY13421: mm/dd/yy hh:mm:ss DISABLE DELAYED UNTIL ALL USING TASKS COMPLETE TERM termzd
TRAN=transid . .o
EZY13431: mm/dd/yy hh mim:ss CICS / SOCKETS INTERFACE IMMEDIATELY DISABLED TERM term
TRAN=tranxxx . . .
EZY13441: mm/dd/yy hh:mm:ss CICS / SOCKETS INTERFACE QUIESCENTLY DISABLED TERM term
TRAN=tranxxx . .

EZY13471: mm/dd/yy hh:mm:ss PROGRAM progmmname ASSUMED TO BE AUTOINSTALLED
TRANID=transactionid IP ADDR=inetaddress PORT=portnumber .

EZY1348E: mm/dd/yy hh:mm:ss INVALID SOCKET FUNCTION function ERRNO errno TRAN tmmd TASK tuskld
EZY1349E: mm/dd/yy hh:mm:ss UNABLE TO OPEN CONFIGURATION FILE TRANSACTION=transactionid
EIBRESP2=eibresp?.

EZY1350E: mm/dd/yy hh:mm:ss NOT AUTHORIZED TO USE api junctzon actzon IGNORED TERM termzd
TRAN=transid . .o
EZY1351E: mm/dd/yy hh mim:ss EXIT PROGRAM (EZACICOI) IS NOT ENABLED actzon IGNORED
TERM=termid TRAN=transid

EZY1352E: mm/dd/yy hh:mm:ss SUBTASK ENDED UNEXPECTEDLY TRANSACTION tmnsactzonzd TASKID—
taskid . .

EZY1353E: mm/dd/yy hh mm:ss COMMA MISSING AFTER IC TRANS ID = tmnsactwmd PARTNER IP ADDR =
inetaddress PORT = portnumber . e
EZY13541: mm/dd/yy hh:mm:ss CICS/ SOCKETS CICS TRACING IS status

EZY13551: mm/dd/yy hh:mm:ss CICS/SOCKETS TCBLIM EXCEEDS MAXOPENTCBS

EZY1356E: mm/dd/yy hh:mm:ss CICS/SOCKETS TCBLIM HAS BEEN REACHED .

EZY13571: mm/dd/yy hh:mm:ss TRANSIENT DATA QUEUE SPECIFIED ON ERRORTD IS NOT DEFINED TO
CICS . .
EZY1358E: 10999 ABEND IP CICS SOCKETS USING OTE

EZY13591: mm/dd/yy hh:mm:ss CICS/SOCKETS APPLICATIONS WILL USE THE QR TCB

EZY13601: mm/dd/yy hh:mm:ss CICS/SOCKETS TCBLIM CONDITION HAS BEEN RELIEVED

EZY1361E: mm/dd/yy hh:mm:ss CICS/TS OPEN TRANSACTION ENVIRONMENT SUPPORT IS NOT
AVAILABLE.

EZY1362E: mm/dd/yy hh mm:ss CICS/ SOCKETS START OF LISTENER tmnsactzomd FAILED RESPl respl
RESP2=resp2. .

EZY13631: mm/dd/yy hh MM:SS LISTENER tmnsactzonzd taskno HAD threads THREADS ACTIVE WHEN STACK
tcpname ENDED

EZY13641: mm/dd/yy hh:mm:ss LISTENER tmnsactzomd DETECTED THAT TTLS IS status ON STACK tcpname
EZY1365E: mm/dd/yy hh:mm:ss LISTENER transactionid taskno IS NOT ACCEPTING REQUESTS ON PORT port
EZY1366E: mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tranid IS ALREADY ACTIVE
EZY13671: mm/dd/yy hh:mm:ss SOCK# IP ADDRESS PORT CHILD . e
EZY1368I: mm/dd/yy hh:mm:ss sock# ipaddr port tran . .

EZY1369E: mm/dd/yy hh:mm:ss LISTENER transactionid taskno IS DELAYED STACK tcpname IS
UNAVAILABLE.

EZY13701: mm/dd/yy hh:mm:ss LISTENER tmnsactwmd NUMSOCK numsock IS EQUAL TO OR GREATER
THAN MAXFILEPROC maxfileproc .

EZY1371E: mm/dd/yy hh:mm:ss AUTOMATIC APPLDATA REGISTRATION FAILED FOR TRANSACTION—
transactionid TASKNO= taskno ERRNO= errno. Ce e

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

. 527

. 528

. 528

. 529

. 530

. 530

. 531

. 531

. 532

. 533

. 534

. 535
536

. 537

. 537

. 538

. 539

. 540
. 541
. 542
. 543

. 544
. 545
. 545
. 546

. 547

. 547

. 548

550
551

. 552
. 553
. 554
. 556
. 557

. 559

Appendix E. Sampleprograms 4« 4 & 561
EZACICSC s Lbel
EZACICSS 7
EZACIC6C58
EZACIC6So ... %
EZACICAC Le13
EZACICAS60
SELECTEX oo 6

Appendix F. Related protocol specifications639
Appendix G. Accessibility663

Notices.0667
Policy for unsupported hardware. .67
Trademarks L . L L . oL L Lo L. 675

Bibliography. e e e e e e e e e e e e .. . BTT
Index & . L . e e e e e e e e e e e e e e e e e e e 681

Communicating your commentstolBM689

Contents X1

xil z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Figures

1. The use of CICS sockets. . . .)

2. TCP/IP protocols compared to the OSI model and SNA G

3. Atypical client-server session. ..9

4. Aniterative server 1o

5. A concurrent server.00

6. The SELECT call.15

7. How user applications access TCP / IP networks w1th CICS TCP/ 1P (run-tlme env1ronment) B

8. JCL for CICS startup with the TCP/IP socket interface (part 1of2).24

9. JCL for CICS startup with the TCP/IP socket interface (part2of2).25
10. EZAC, transaction to configure the socket interface .28
11. EZAO, transaction to enable the socket interface .28
12. EZAP, transaction to disable the socket interface .28
13. CSKL, Listener task transaction. .28
14. EZACIC00, connection manager program .3
15. EZACICO1, task related user exit program .30
16. EZACICO02, listener program . . . G (0]
17. EZACIC20, front-end module for CICS sockets . (0]
18. EZACIC21, initialization module for CICS sockets .3
19. EZACIC22, termination module for CICS sockets .3
20. EZACIC23, primary module for transaction EZAC .31
21. EZACIC24, message delivery module for CICS sockets31
22. EZACIC25, domain name server cache module .3
23. EZACICM, maps used by the EZAO transaction .32
24. EZACICME, US. English text delivery module . . . e 2
25. EZACICSC, sample IPv4 child server transaction and program deflrutlons R
26. EZACICSS, sample iterative IPv4 server transaction and program definitions33
27. EZACIC6C, sample IPv6 child server transaction and program definitions34
28. EZACIC6S, sample iterative IPv6 server transaction and program definitions34
29. EZACICAC, sample assembler child server transaction and program definitions35
30. EZACICAS, sample assembler server transaction and program definitions35
31. ALTER PROGRAM instructions. . . G)
32. DFHCSDUP commands to define EZACONFG N 4
33. DFHCSDUP commands to define EZACACHE. .38
34. CICS TCP/IP Transient Data Queue definitions .39
35. The Monitor Control Table (MCT) for TRUE .4
36. The Monitor Control Table (MCT) for listener .4
37. EZASOKET threadsafe transaction. .46
38. Definition of the hlq. TCP/IP profile . . . - 1 |
39. The TCPIPJOBNAME parameter in the hlg. TCPIP DATA data set e B2
40. EZACICEFG configuration file . . e i
41. CICSVSAM JCL to define a conflguratlon f11e N 1
42. EZAC initial screen e o1
43. EZAC,ALTER screen
44. EZAC,ALTER,CICS screen « «o
45. EZAC,ALTER,CICS detail screen7Nn
46. EZAC,ALTER,LISTENER screen. . . e e e .2
47. EZAC,ALTER,LISTENER detail screen 1- Standard 11stener e e e L2
48. EZAC,ALTER,LISTENER detail screen 2: Standard listener.73
49. EZAC,ALTER,LISTENER detail screen 1- Enhanced listener73
50. EZAC,ALTER,LISTENER detail screen 2: Enhanced listener74
51. EZAC,CONVERT,LISTENER screen . . 4}
52. EZAC,CONVERT,LISTENER detail screen 1 Standard hstener e e e ..U
53. EZAC,CONVERT,LISTENER detail screen 2: Standard listener76
54. EZAC,CONVERT,LISTENER detail screen 1- Enhanced listener77
55. EZAC,CONVERT,LISTENER detail screen 2: Enhanced listener77

© Copyright IBM Corp. 2000, 2015 xiii

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.

109.
110.
111.

112.

xiv

EZAC,COPY screen . .

EZAC,COPY,CICS screen . .

EZAC,COPY,LISTENER screen .

EZAC,DEFINE screen . .

EZAC,DEFINE,CICS screen . .

EZAC,DEFINE,CICS detail screen .
EZAC,DEFINE,LISTENER screen
EZAC,DEFINE,LISTENER detail screen 1 Standard hstener
EZAC,DEFINE,LISTENER detail screen 2: Standard listener

EZAC,DEFINE,LISTENER detail screen 1- Enhanced listener .
EZAC,DEFINE,LISTENER detail screen 2: Enhanced listener .

EZAC,DELETE screen . .

EZAC,DELETE,CICS screen . .
EZAC,DELETE,LISTENER screen .
EZAC,DISPLAY screen. .

EZAC,DISPLAY,CICS screen . .
EZAC,DISPLAY,CICS detail screen .
EZAC,DISPLAY,LISTENER screen .

EZAC,DISPLAY,LISTENER detail screen 1- Standard hstener .

EZAC,DISPLAY,LISTENER detail screen 2: Standard listener .
EZAC,DISPLAY,LISTENER detail screen 1- Enhanced listener .

EZAC,DISPLAY,LISTENER detail screen 2: Enhanced listener .

EZAC,RENAME screen

EZAC,RENAME,CICS screen. .
EZAC,RENAME,LISTENER screen. .
Example of defining and initializing a DNS cache f11e .
The DNS HOSTENT .

EZAO initial screen

EZAO INQUIRE screen . .

EZAO INQUIRE CICS screen . .
EZAO INQUIRE LISTENER selectlon screen .
EZAO INQUIRE LISTENER screen

EZAO SET screen . .

EZAOQO SET CICS screen . . .

EZAO SET LISTENER selection screen .

EZAO SET LISTENER screen

EZAO START screen . .

EZAO START CICS response screen .

EZAO START LISTENER screen .

EZAO START LISTENER result screen .

EZAQO START TRACE screen

EZAQO STOP screen

EZAO STOP CICS screen

EZAO STOP LISTENER screen.

EZAQO STOP TRACE screen. .

Program Definition for listener EZACICOZ

The sequence of sockets calls .
Sequence of socket calls with an iterative server .

Sequence of socket calls between a CICS client and a remote 1terat1ve server

MVS address spaces
Transfer of CLIENTID 1nformat10n

Example of COBOL layout of the listener output format Standard hstener .
Example of PL/I layout of the listener output format - Standard listener with an IPV4 socket address

structure .

Example of PL/I layout of the hstener output format Standard hstener w1th an IPV6 socket address

structure .

Example of Assembler layout of the hstener output format Standard hstener supportmg both an IPV4 and

an IPv6 socket address structure .

Example of C structure of the listener output format - Standard hstener supportlng both an IPV4 and an

IPv6 socket address structure .

Example of COBOL layout of the 11stener output format Enhanced hstener

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

. 78
.79
. 80
.81
. 82
. 82
. 83
. 83
. 84
. 85
. 85
. 86
. 87
. 88
. 89
. 90
. 90
.91
.91
.92
. 93
.93
. 94
. 95
. .9
. 101
. 105
. 109
. 110
. 110
111
. 112
. 113
. 113
. 114
. 115
. 116
. 116
. 117
. 117
. 118
. 119
. 119
. 120
. 121
. 126
. 131
. 135
. 136
. 139
. 140
. 145

. 146

. 146

. 147

. 148
. 150

113.

114.

115.

116.

117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

Example of PL/I layout of the listener output format - Enhanced listener with an IPv4 socket address

structure .

Example of PL/I layout of the hstener output format Enhanced hstener w1th an IPV6 socket address

structure .

Example of assembler layout of the hstener output format Enhanced hstener supportmg both an IPV4 and

an IPv6 socket address structure .

Example of C structure of the listener output format - Enhanced hstener supportlng both an IPV4 and an

IPv6 socket address structure .

Storage definition statement examples
ACCEPT call instructions example

BIND call instruction example . .
BIND2ADDRSEL call instructions example
CLOSE call instruction example
CONNECT call instruction example .
FCNTL call instruction example .
FREEADDRINFO call instruction example .
GETADDRINFO call instruction example
GETCLIENTID call instruction example.
GETHOSTBYADDR call instruction example .

HOSTENT structure returned by the GETHOSTBYADDR call

GETHOSTBYNAME call instruction example .

HOSTENT structure returned by the GETHOSTYBYNAME call

GETHOSTID call instruction example
GETHOSTNAME call instruction example .
GETNAMEINFO call instruction example .
GETPEERNAME call instruction example .
GETSOCKNAME call instruction example .
GETSOCKORPT call instruction example.
GIVESOCKET call instruction example .
INET6_IS_SRCADDR call instruction example
INITAPI call instruction example . .
IOCTL call instruction example .

COBOL language example for SIOCGHOMEIF6

COBOL language example for SIOCGIFNAMEINDEX .

COBOL II example for SIOCGIFCONF .
LISTEN call instruction example .

NTOP call instruction example.

PTON call instruction example.

READ call instruction example.

READV call instruction example .

RECV call instruction example .

RECVFROM call instruction example .
RECVMSG call instruction example (Part 1 of 2)
RECVMSG call instruction example (Part 2 of 2) .
SELECT call instruction example . .
SELECTEX call instruction example .

SEND call instruction example.

SENDMSG call instruction example .
SENDTO call instruction example. .
SETSOCKOPT call instruction example .
SHUTDOWN call instruction example .
SOCKET call instruction example . .
TAKESOCKET call instruction example .
TERMAPI call instruction example

WRITE call instruction example

WRITEV call instruction example .

EZACIC04 EBCDIC-to-ASCII table .
EZACIC04 call instruction example .
EZACIC05 ASCII-to-EBCDIC .
EZACICO05 call instruction example .
EZACICO06 call instruction example .

Figures

. 150

. 151

. 151

. 152
. 250
. 252
. 254
. 257
. 260
. 261
. 264
. 266
. 268
. 276
. 278
. 279
. 281
. 282
. 283
. 284
. 286
. 290
. 292
. 294
. 310
. 312
. 316
. 318
. 320
. 322
. 329
. 330
. 331
. 334
. 336
. 338
. 340
. 342
. 345
. 346
. 351
. 355
. 360
. 362
. 366
. 369
. 386
. 387
. 389
. 391
. 392
. 393
. 397
. 398
. 399
. 400
. 401

XV

170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.

xvi

EZAZICO08 call instruction example .

EZACICQ9 call instruction example (Part 1 of 2) .
EZACICQ9 call instruction example (Part 2 of 2) .

EZACIC14 EBCDIC-to-ASCII table
EZACIC14 call instruction example
EZACIC15 ASCII-to-EBCDIC table
EZACIC15 call instruction example .
Modified JCL for COBOL compilation
EZACICSC IPv4 child server sample.
EZACICSS IPv4 iterative server sample .
EZACIC6C IPv6 child server sample.
EZACIC6S IPv6 iterative server sample .
EZACICAC assembler child server sample.
EZACICAS assembler iterative server sample.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

. 403
. 407
. 408
. 410
. 411
. 412
. 413
. 416
. 561
. 568
. 585
. 594
. 614
. 621

Tables

—_
CORPNT BN

N RN DN NN DNDNDNDN PR e el
PN E WP ON0RONNUIEWN -

First fullword passed in a bit string in select

Second fullword passed in a bit string in select

Security / Transaction Exit program information fields .
Available parameters and values to the CICS Explorer .
Configuration options affected by OTE .

Listener's action based on RTYTIME and stack state .
Conditions for translation of tranid and user data.

Functions supported by the EZAC transaction .

Calls for the client application .

Calls for the server application. .

Calls for the concurrent server apphcatlon

CLIENTID structures . .
Listener configuration presented to securrty or transactlon ex1t
Listener output format - Standard listener .

Listener output format - Enhanced listener.

security or transaction exit data .
Different concurrency attributes for IP CICS sockets task related user ex1ts .
Inbound AT-TLS support.

Outbound AT-TLS support .

C structures . .

OPTNAME options for GETSOCKOPT and SETSOCKOPT
IOCTL call arguments.

OPTNAME options for GETSOCKOPT and SETSOCKOPT
Effect of SHUTDOWN socket call. e
Sockets ERRNOs .

Sockets extended ERRNOs .

GETSOCKOPT /SETSOCKOPT Command Values for Macro Assembler COBOL and PL / I.

GETSOCKOPT/SETSOCKOPT optname value for C programs .

© Copyright IBM Corp. 2000, 2015

. 16
. 16
.21
.22
. 57
. 63
. 64
. 68

. 131
. 132
. 133
. 139
. 141
. 144
. 148
. 153
. 158
. 162
. 163
. 167
. 295
. 326
. 370
. 384
. 449
. 459
. 465
. 466

xvii

xviil z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

About this document

This document describes the TCP/IP Socket Interface for CICS® (referred to as
CICS TCP/IP for short). It contains an introduction, a guide to initialization, and a
guide and reference to writing application programs. Use this document to set up
CICS TCP/IP, write application programs, and diagnose problems. The information
in this document supports both IPv6 and IPv4. Unless explicitly noted, information
describes IPv4 networking protocol. IPv6 support is qualified within the text.

The information in this document includes descriptions of support for both IPv4
and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol
support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E
distribution library name. Your installation might, however, have different names
for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this document refers to samples in SEZAINST
library as simply in SEZAINST. Your installation might choose a data set name of
SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set
name.

Who should read this document

This document is intended for both system programmers and application
programmers who perform any of the following tasks with CICS TCP/IP:

* Setting up CICS TCP/IP
* Writing application programs
* Diagnosing problems

The document assumes that the reader is familiar with the MVS™ operating
system, and the C, COBOL, PL/I, or Assembler programming languages. Because
the CICS Transaction Server (CICS TS) is a prerequisite for CICS TCP/IP, the
document assumes the reader is also familiar with CICS TS.

How this document is organized

This document contains the following topics:

* [Chapter 1, “Introduction to CICS TCP/IP,” on page 1| provides an overview of
CICS TCP/IP.

* |Chapter 2, “Setting up and configuring CICS TCP/IP,” on page 23| describes the
steps required to configure CICS TCP/IP.

* |Chapter 3, “Configuring the CICS Domain Name Server cache,” on page 97|
describes how to configure the CICS domain name server cache.

* [Chapter 4, “Managing IP CICS sockets,” on page 107 explains how to start and
stop (enable and disable) CICS TCP/IP.

* [Chapter 5, “Writing your own listener,” on page 125| discusses writing your own
listener.

* |Chapter 6, “Writing applications that use the IP CICS sockets API,” on page 129|
describes how to write applications that use the sockets application

© Copyright IBM Corp. 2000, 2015 xix

programming interface (API). It describes typical sequences of calls for client,
concurrent server (with associated child server processes), and iterative server
programs.

* [Chapter 7, “C language application programming,” on page 165| describes the C
language API provided by CICS TCP/IP.

* |Chapter 8, “Sockets extended API,” on page 245| describes the sockets extended
APL

* |Appendix A, “Original COBOL application programming interface|
(EZACICAL),” on page 415|describes the EZACICAL APL

* |Appendix B, “Return codes,” on page 449 describes system-wide message
numbers and codes set by the system calls.

* |Appendix C, “GETSOCKOPT/SETSOCKOPT command values,” on page 465|
provides the decimal or hexadecimal values associated with the
GETSOCKOPT/SETSOCKOPT OPTNAMES supported by the APIs discussed in
this information.

* |Appendix D, “CICS sockets messages,” on page 469| contains CICS socket
interface messages.

* |Appendix E, “Sample programs,” on page 561| contains samples of the following
programs:

— EZACICSC - An IPv4 child server

— EZACICSS - An IPv4 iterative server

— EZACIC6C - An IPv6 child server

— EZACIC6S - An IPv6 iterative server

— EZACICAC - An assembler child server

— EZACICAS - An assembler iterative server

+ |Appendix F, “Related protocol specifications,” on page 639 lists the related
protocol specifications for TCP/IP.

* |Appendix G, “Accessibility,” on page 663| contains information about features
that help a user who has a physical disability, such as restricted mobility or
limited vision, to use software products successfully.

* [“Bibliography” on page 677] contains descriptions of the information in the
z/0S® Communications Server library.

How to use this document

XX

To use this document , you should be familiar with z/OS TCP/IP Services and the
TCP/IP suite of protocols.

Determining whether a publication is current

As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager® softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:
¢ At the end of a publication's order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

* To compare softcopy publications, you can check the last 2 characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this website: Ihttp:/ /www.software.ibm.com/ |
[network /commserver/support/|

Most problems can be resolved at this website, where you can submit questions
and problem reports electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday — Friday, 8:00 a.m.
- 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see [“Communicating]
[your comments to IBM” on page 689

Conventions and terminology that are used in this document

Commands in this book that can be used in both TSO and z/0OS UNIX
environments use the following conventions:

* When describing how to use the command in a TSO environment, the command
is presented in uppercase (for example, NETSTAT).

* When describing how to use the command in a z/OS UNIX environment, the
command is presented in bold lowercase (for example, netstat).

* When referring to the command in a general way in text, the command is
presented with an initial capital letter (for example, Netstat).

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM®, is an application
program; therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

Note: In this information, you might see the following Shared Memory
Communications over Remote Direct Memory Access (SMC-R) terminology:

+ RDMA network interface card (RNIC), which is used to refer to the IBM® 10GbE
RoCE Express® feature.

About this document XX1

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

* Shared RoCE environment, which means that the 10GbE RoCE Express feature
operates on an IBM z13 (z13) or later system, and that the feature can be used
concurrently, or shared, by multiple operating system instances. The RoCE
Express feature is considered to operate in a shared RoCE environment even if
you use it with a single operating system instance.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at [the IBM Terminology website}

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:
Note Supplemental detail
Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram

xxii

This syntax information applies to all commands and statements that do not have
their own syntax described elsewhere.

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and punctuation

The following symbols are used in syntax diagrams:

Symbol
Description

>> Marks the beginning of the command syntax.

> Indicates that the command syntax is continued.

I Marks the beginning and end of a fragment or part of the command
syntax.

>< Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www.ibm.com/software/globalization/terminology/index.jsp

Commands

Commands that can be used in both TSO and z/0OS UNIX environments use the
following conventions in syntax diagrams:

* When describing how to use the command in a TSO environment, the command
is presented in uppercase (for example, NETSTAT).

* When describing how to use the command in a z/OS UNIX environment, the
command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.

Required
Required parameters are displayed on the main path.

Optional
Optional parameters are displayed below the main path.

Default
Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console
commands, the keywords are not case sensitive. You can code them in uppercase
or lowercase. If the keyword appears in the syntax diagram in both uppercase and
lowercase, the uppercase portion is the abbreviation for the keyword (for example,
OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case
indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples
In the following example, the PUt subcommand is a keyword. The required

variable parameter is local_file, and the optional variable parameter is foreign_file.
Replace the variable parameters with your own values.

About this document ~ Xxxiii

xxiv

»»—PUt—Ilocal_file

v
A

l—foreign_file—l

Longer than one line

If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

»—I The first Tine of a syntax diagram that is longer than one line |—>

>ﬂ The continuation of the subcommands, parameters, or both i >«

Required operands

Required operands and values appear on the main path line. You must code
required operands and values.

»>—REQUIRED_OPERAND

Y
A

Optional values

Optional operands and values appear below the main path line. You do not have
to code optional operands and values.

v
A

|—OPERAND—|

Selecting more than one operand

An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

v
v
v
A

Y __REPEATABLE_OPERAND_OR VALUE_1
REPEATABLE_OPERAND OR_VALUE_2—
REPEATABLE_OPER OR_VALUE_1——
REPEATABLE_OPER OR_VALUE 2——

Nonalphanumeric characters
If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the

syntax. In this example, you must code OPERAND=(001,0.001).

»»—(OPERAND—=—(—001—,—0.001—) ><

Blank spaces in syntax diagrams

If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

A\
A

»»—0PERAND—=—(—001— —FIXED—)
Default operands

Default operands and values appear above the main path line. TCP/IP uses the
default if you omit the operand entirely.

About this document XXV

DEFAULT
o il
|—OPERAND—|

Y
A

Variables
A word in all lowercase italics is a variable. Where you see a variable in the syntax,
you must replace it with one of its allowable names or values, as defined in the

text.

»»—variable >«

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in mixed
case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram.

>>—] Syntax fragment i >

Syntax fragment:

|—1$T_OPER/-\ND—,—ZND_OPERAND—,—3RD_0PERAND I

Prerequisite and related information

z/0S Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in [“Bibliography” on|

in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and
UNIX System Services.

Softcopy information

Softcopy publications are available in the following collection.

Collection

Titles Order Description
Number
IBM System z Redbooks SK3T-7876 The IBM Redbooks® publications selected for this CD series are

taken from the IBM Redbooks inventory of over 800 books. All the
Redbooks publications that are of interest to the System z® platform
professional are identified by their authors and are included in this
collection. The System z subject areas range from e-business
application development and enablement to hardware, networking,
Linux, solutions, security, parallel sysplex, and many others. For
more information about the Redbooks publications, see

|http:/ /www-03.ibm.com/systems/z/0s/zos/ zfavorites /|

XXVl z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-03.ibm.com/systems/z/os/zos/zfavorites/

Other documents

This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see [z/OS Information Roadmap| (SA23-2299). The Roadmap describes what level of
documents are supplied with each release of z/OS Communications Server, and

also describes each z/OS publication.

To find the complete z/OS library, visit the [z/OS library]in [BM Knowledge Center|

(www.ibm.com/support/knowledgecenter /SSLTBW /welcome).

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

Title

Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006

ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999)

ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats

GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376
Understanding LDAP 5G24-4986
|z/OS Cryptographic Services System SSL Programming] SC14-7495
|z/OS IBM Tivoli Directory Server Administration and Use for z/OS| S5C23-6788
|z/ OS JES? Initialization and Tuning Guide] SA32-0991
|z/OS Problem Management| SC23-6844
|z/OS MVS Diagnosis: Reference| GA32-0904
|z/OS MVS Diagnosis: Tools and Service Aids| GA32-0905
|z/OS MVS Using the Subsystem Interface SA38-0679
|z/OS Program Directory| GI11-9848

|z/OS UNIX System Services Command Reference] SA23-2280
|z/OS UNIX System Services Planning] GA32-0884
|z/OS UNIX System Services Programming: Assembler Callable Services Reference| |SA23-2281
lz/OS UNIX System Services User's Guide] SA23-2279
|z/OS XL C/C++ Runtime Library Reference| SC14-7314
[zEnterprise System and System z10 OSA-Express Customer's Guide and Reference| |SA22-7935

About this document

xxvii

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www-01.ibm.com/support/knowledgecenter/

Redbooks publications

The following Redbooks publications might help you as you implement z/OS

Communications Server.

Title Number
IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 1: Base S5G24-8096
Functions, Connectivity, and Routing

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 2: Standard 5G24-8097
Applications

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 3: High S5G24-8098
Awailability, Scalability, and Performance

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 4: Security and | SG24-8099
Policy-Based Networking

IBM Communication Controller Migration Guide 5G24-6298
IP Network Design Guide S5G24-2580
Managing 05/390 TCP/IP with SNMP S5G24-5866
Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender S5G24-5957
SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements 5G24-5631
SNA and TCP/IP Integration 5G24-5291
TCP/IP in a Sysplex 5G24-5235
TCP/IP Tutorial and Technical Overview GG24-3376
Threadsafe Considerations for CICS 5G24-6351

Where to find related information on the Internet

z/O0S

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information

about z/OS technology

[http:/ /www.ibm.com /systems/z/0s/zos /|
z/OS Internet Library

Use this site to view and download z/0OS Communications Server

documentation

[www.ibm.com /systems/z/0s/zos /bkserv /|

IBM Communications Server product

The primary home page for information about z/OS Communications

Server

Ihttp: / /www.software.ibm.com /network /commserver/ |

IBM Communications Server product support

XXViii

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

Ihttp: / /www.software.ibm.com /network /commserver/support/ |

IBM Communications Server performance information

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/

This site contains links to the most recent Communications Server
performance reports.

[http:/ / www.ibm.com /support/docview.wss?uid=swg27005524|

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapersm, and
Technotes

Ihttp: / /www.redbooks.ibm.com/ |

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

lhttp:/ /www.ibm.com /support/techdocs /atsmastr.nsf]
Tivoli® NetView® for z/OS

Use this site to view and download product documentation about Tivoli
NetView for z/0S

lhttp:/ /www.ibm.com /support/knowledgecenter /SSZJDU /welcome]

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force website, with links to the RFC
repository and the IETF Working Groups web page

lhttp:/ /www.ietf.org /rfc.html|

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force website

lhttp:/ /www.ietf.org /ID.html|

Information about web addresses can also be found in information APAR 1I111334.

Note: Any pointers in this publication to websites are provided for convenience
only and do not serve as an endorsement of these websites.

DNS websites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
lhttps: / /lists.isc.org /mailman /listinfo]

BIND Users

* Subscribe by sending mail to bind-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

About this document XX1X

http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
https://lists.isc.org/mailman/listinfo

XXX

* Subscribe by sending mail to bind9-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/0OS Basic Skills Information Center is a web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:

* Provide basic education and information about z/OS without charge
 Shorten the time it takes for people to become productive on the mainframe
* Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the
following website, which is available to all users (no login required):

http: / / www-01.ibm.com/support/knowledgecenter/zosbasics /|

com.ibm.zos.zbasics /homepage.html?cp=zosbasics%2F(|

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics%2F0
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics%2F0

Summary of changes for IP CICS Sockets Guide

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability. Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in z/OS Version 2 Release 2

This document contains information previously presented in z/OS
Communications Server: IP CICS Sockets Guide, SC27-3649-00, which supported
z/0S Version 2 Release 1.

New information

* CICS transaction tracking support for CICS TCP/IP IBM Listener, see
[“Monitoring with CICS Explorer” on page 22

Summary of changes for z/0OS Version 2 Release 1

For specifics on the enhancements for z/OS Version 2, Release 1, see the following
publications:

* |z/0S Summary of Message and Interface Changes|
* |z/0S Introduction and Release Guide]

* |z/OS Planning for Installation|

* |z/0S Migration|

© Copyright IBM Corp. 2000, 2015 xxxi

xxxil z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 1. Introduction to CICS TCP/IP

The IP CICS socket API and the IBM supplied listener is IPv4 and IPv6 enabled.

CICS Transaction Server (CICS TS) is an online transaction processing system.
Application programs using CICS can handle large numbers of data transactions
from large networks of computers and terminals.

Communication throughout these networks has often been based on the Systems
Network Architecture (SNA) family of protocols. CICS TCP/IP offers CICS users
an alternative to SNA, the TCP/IP family of protocols for those users whose native
communications protocol is TCP/IP.

CICS TCP/IP allows remote users to access CICS client/server applications over
TCP/IP Internets. [Figure 1 on page 2| shows how these two products give remote
users peer-to-peer communication with CICS applications.

It is important to understand that CICS TCP/IP is primarily intended to support
peer-to-peer applications, as opposed to the traditional CICS mainframe interactive
applications in which the CICS system contained all program logic and the remote
terminal was often referred to as a “dumb” terminal. To connect a TCP/IP host to
one of those traditional applications, you should first consider using Telnet. With
Telnet, you should be able to access existing 3270-style basic mapping support
(BMS) applications without modification and without the need for additional
programming. Use CICS TCP/IP when you are developing new peer-to-peer
applications in which both ends of the connection are programmable.

© Copyright IBM Corp. 2000, 2015 1

Z/0S

UNIX

CICS region
CICS <>
transaction
CICS. b
transaction

CICS TCP/IP

Sockets | ¢ for <« » LAN —» other
networks
API z/OS

Linux

Figure 1. The use of CICS sockets

CICS TCP/IP provides a variant of the Berkeley Software Distribution 4.3 sockets
interface, which is widely used in TCP/IP networks and is based on the UNIX
system and other operating systems. The socket interface consists of a set of calls
that your CICS application programs can use to set up connections, send and
receive data, and perform general communications control functions. The programs
can be written in COBOL, PL/I, assembler language, or the C language.

TCP/IP internets

This topic describes some of the basic ideas behind the TCP/IP family of protocols.
For more detailed and comprehensive treatments of this subject, see the documents
about TCP/IP listed in http://www-03.ibm.com/systems/z/o0s/zos/library/
bkserv/index.html.

Like SNA, TCP/IP is a communication protocol used between physically separated
computer systems. Unlike SNA and most other protocols, TCP/IP is not designed
for a particular hardware technology. TCP/IP can be implemented on a wide
variety of physical networks, and is specially designed for communicating between
systems on different physical networks (local and wide area). This is called
Internetworking.

TCP/IP Services Telnet support

TCP/IP Services supports traditional 3270 mainframe interactive (MFI) applications
with an emulator function called Telnet (TN3270). For these applications, all
program logic is housed in the mainframe, and the remote host uses only that
amount of logic necessary to provide basic communication services. Thus, if your
requirement is simply to provide access from a remote TCP/IP host to existing
CICS MFI applications, you should probably consider Telnet rather than CICS
TCP/IP as the communications vehicle. Telnet 3270-emulation functions allow your
TCP/IP host to communicate with traditional applications without modification.

CICS TCP/IP client and server processing

TCP/IP also supports client and server processing, where processes are either:

* Servers that provide a particular service and respond to requests for that service

2 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* Clients that initiate the requests to the servers

With CICS TCP/IP, remote client systems can initiate communications with CICS
and cause a CICS transaction to start. It is anticipated that this is the most common
mode of operation. Alternatively, the remote system can act as a server with CICS
initiating the conversation.

TCP/IP TCP, UDP, and IP protocols

TCP/IP is

members.

a large family of protocols that is named after its two most important
Figure 2| shows the TCP/IP protocols used by CICS TCP/IP, in terms of

the layered Open Systems Interconnection (OSI) model, which is widely used to
describe data communication systems. For CICS users who might be more
accustomed to SNA, the left side of shows the SNA layers, which
correspond very closely to the OSI layers.

SNA (o] TCP/IP Family
Application 7 Application
Presentation 6| Presentation Application
Data Flow 5 Session
Transmission 4 Transport TCP or UDP
Path Control 3 Network IP
Data Link 2 Data Link Data Link
Physical 1 Physical Physical

<4—— Sockets API

Figure 2. TCP/IP protocols compared to the OSI model and SNA

The protocols implemented by TCP/IP Services and used by CICS TCP/IP are
shown in the right hand column in

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a
reliable virtual-circuit connection between applications; that is, a connection is
established before data transmission begins. Data is sent without errors or
duplication and is received in the same order as it is sent. No boundaries are
imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides
an unreliable datagram connection between applications. Data is transmitted
link by link; there is no end-to-end connection. The service provides no
guarantees. Data can be lost or duplicated, and datagrams can arrive out of

order.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
datagram service between applications, supporting both TCP and UDP.

The socket APl communication functions

The socket API is a collection of socket calls that enables you to perform the
following primary communication functions between application programs:

* Set up and establish connections to other users on the network

Chapter 1. Introduction to CICS TCP/IP 3

4

e Send and receive data to and from other users

¢ Close down connections

In addition to these basic functions, the APIs enable you to:
* Interrogate the network system to get names and status of relevant resources
* Perform system and control functions as required

CICS TCP/IP provides three TCP/IP socket application program interfaces (APlIs),
similar to those used on UNIX systems. One interfaces to C language programs,
the other two to COBOL, PL/I, and assembler language programs.

e C language. Historically, TCP/IP has been linked to the C language and the
UNIX operating system. Textbook descriptions of socket calls are usually given
in C, and most socket programmers are familiar with the C interface to TCP/IP.
For these reasons, TCP/IP Services includes a C language APL If you are writing
new TCP/IP applications and are familiar with C language programming, you
might prefer to use this interface. See [Chapter 7, “C language application|
[programming,” on page 165 for the sockets calls provided by TCP/IP Services.

* Sockets Extended API (COBOL, PL/I, assembler language). The Sockets
Extended API is for those who want to write in COBOL, PL/I, or assembler
language, or who have COBOL, PL/I, or assembler language programs that
need to be modified to run with TCP/IP. If you are writing new TCP/IP
applications in COBOL, PL/I, or assembler language, you might prefer to use
the Sockets Extended API. See |[Chapter 8, “Sockets extended APL” on page 245|
for details of this interface.

* Version 2.2.1 (COBOL, PL/I, assembler language). This is the API that was
offered to users of the original release of CICS TCP/IP. It is similar in use to the
Sockets Extended API. The Version 2.2.1 API is available for those who want to
maintain Version 2.2.1 programs. This interface is described in |Kppendix A,l
“Original COBOL application programming interface (EZACICAL),” on page]

115]

Programming with sockets

The original UNIX socket interface was designed to hide the physical details of the
network. It included the concept of a socket, which would represent the connection
to the programmer, yet shield the program (as much as possible) from the details
of communication programming. A socket is an end-point for communication that
can be named and addressed in a network. From an application program
perspective, a socket is a resource that is allocated by the TCP/IP address space. A
socket is represented to the program by an integer called a socket descriptor.

MVS socket APIs

The MVS socket APIs provide a standard interface to the transport and
Internetwork layer interfaces of TCP/IP. They support three socket types: stream,
datagram, and raw. Stream and datagram socket interface to the transport layer
protocols, and raw socket interface to the network layer protocols. All three socket
types are discussed here for background purposes. While CICS supports stream
and datagram sockets, stream sockets provide the most reliable form of data
transfer offered by TCP/IP.

Stream sockets transmit data between TCP/IP hosts that are already connected to
one another. Data is transmitted in a continuous stream; in other words, there are
no record length or new-line character boundaries between data. Communicating

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

processes ' must agree on a scheme to ensure that both client and server have
received all data. One way of doing this is for the sending process to send the
length of the data, followed by the data itself. The receiving process reads the
length and then loops, accepting data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a "reliable"
connection-oriented service. In this context, the word reliable means that data is
sent without error or duplication and is received in the same order as it is sent.
Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are sent
as independent packets. The service provides no guarantees; data can be lost or
duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction (currently the default is
8192 and the maximum is 65507). No disassembly and reassembly of packets is
performed by TCP/IP.

The raw socket interface allows direct access to lower layer protocols, such as IP
and Internet Control Message Protocol (ICMP). This interface is often used for
testing new protocol implementations.

Addressing TCP/IP hosts
This topic describes how one TCP/IP host addresses another TCP/IP host. 2

Address families supported for TCP/IP:

An address family defines a specific addressing format. Applications that use the
same addressing family have a common scheme for addressing socket endpoints.
TCP/IP for CICS supports the AF_INET and the AF_INET6 address family. See the
API topic in |z/OS Communications Server: IPv6 Network and Application Design|
[Guide] for more information about IPv6 programming issues.

Socket addresses in the AF_INET family:
A socket address in the AF_INET family contains four fields:

* The name of the address family itself (AF_INET)
* Aport

* An IPv4 Internet address

* An 8-byte reserved field

In COBOL, an IPv4 socket address looks like this:

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

A socket address in the AF_INET6 family contains five fields:
¢ The name of the address family itself (AF_INET6)

* Aport

* Flow information indicating traffic class and flow label

* An IPv6 Internet address

1. In TCP/IP terminology, a process is essentially the same as an application program.

2.In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of mainframe or large
processor within the TCP/IP definition of the word host.

Chapter 1. Introduction to CICS TCP/IP 5

* A scope ID indicating link scope

In COBOL, an IPv6 socket address looks like this:

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
05 FILLER PIC 9(16) BINARY.
05 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

Programs, such as servers, that support both AF_INET and AF_INET6 sockets,
should code socket address structures using the SOCKADDR layout as described
in the SYS1T.MACLIB(BPXYSOCK). In COBOL, a socket address structure to
support both AF_INET and AF_INET6 looks like this:
01 SOCKADDR.

05 SOCK-FAMILY PIC 9(4) BINARY.

88 SOCK-FAMILY-IS-AFINET VALUE 2.
88 SOCK-FAMILY-IS-AFINET6 VALUE 19.

05 SOCK-DATA PIC X(26).
05 SOCK-SIN REDEFINES SOCK-DATA.
10 SOCK-SIN-PORT PIC 9(4) BINARY.
10 SOCK-SIN-ADDR PIC 9(8) BINARY.
10 FILLER PIC X(8).
10 FILLER PIC X(12).
05 SOCK-SIN6 REDEFINES SOCK-DATA.
10 SOCK-SIN6-PORT PIC 9(4) BINARY.
10 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
10 SOCK-SIN6-ADDR.
15 FILLER PIC 9(16) BINARY.
15 FILLER PIC 9(16) BINARY.
10 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

The IPv4 or IPv6 socket address structure is in every call that addresses another
TCP/IP host.

This structure contains the following fields:

FAMILY
A halfword that defines the addressing family being used. In CICS,
FAMILY is set to a value of a decimal 2 (that specifies the AF_INET

Internet address family) or a value of a decimal 19 (that specifies the
AF_INET6 Internet address family). *

PORT Identifies the application port number and must be specified in network
byte order.

FLOWINFO
Belongs to the IPv6 socket address structure and is 4 bytes in binary
format indicating traffic class and flow label. This field is currently not
implemented.

IP-ADDRESS
The Internet address of the network interface used by the application. It
must be specified in network byte order.

RESERVED
Belongs to the IPv4 socket address structure and should be set to all zeros.

3. Note that sockets support many address families, but TCP/IP for CICS supports only the Internet address family.

6 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

SCOPE-ID
Belongs to the IPv6 socket address structure and is used to specify link
scope for an IPv6 address as an interface index. If specified, and the
destination is not link local, then the socket call fails.

Internet (IP) addresses: An Internet address (also known as an IP address) is a
32-bit field that represents an IPv4 network interface or a 128-bit field that
represents an IPv6 network interface. An IP address is commonly represented in
dotted decimal notation, such as 129.5.25.1, or in colon-hexadecimal notation, such
as 2001:04b8:129:5:25::1. Every Internet address within an administered AF_INET or
AF_INET6 domain must be unique. A common misunderstanding is that a host
must have only one Internet address. In fact, a single host can have several
Internet addresses, one for each network interface. With IPv6, a single interface can
even have multiple addresses, such as link-local, site-local, and global unicast.

Ports: A port is a 16-bit integer that defines a specific application, within an IP
address, in which several applications use the same network interface. The port
number is a qualifier that TCP/IP uses to route incoming data to a specific
application within an IP address. Some port numbers are reserved for particular
applications and are called well-known ports, such as Port 23, which is the
well-known port for Telnet.

IPv4 Example: An MVS system with an IP address of 129.9.12.7 might have CICS
IMS™ as port 2000, and Telnet as port 23. In this example, a client desiring
connection to CICS IMS would issue a CONNECT call, requesting port 2000 at IP
address 129.9.12.7.

IPv6 Example: An MVS system with an IPv6 IP address of

2001:0DB8::206:2 AFF:FE66:C800 might have CICS as port 2000, and Telnet as port
23. In this example, a client that wants to connect to CICS would issue a
CONNECT call, requesting port 2000 at IP address 2001:0DB8::206:2AFF:FE66:C800.

Note: It is important to understand the difference between a socket and a port.
TCP/IP defines a port to represent a certain process on a certain machine (network
interface). A port represents the location of one process in a host that can have
many processes. A bound socket represents a specific port and the IP address of its
host. In the case of CICS, the listener has a listening socket that has a port to
receive incoming connection requests. When a connection request is received, the
listener creates a new socket representing the endpoint of this connection and
passes it to the applications by way of the givesocket/takesocket calls.

Multiple sockets can share the same port and, for CICS, all server applications and
the listener share the same port. For client applications, the bind (or connect)
socket calls assign a port to the socket that is different from the listener or server
port or any other client ports. Normally, client applications do not share ports, but
they can if you specify the SO_REUSEADDR socket option. In the case of IMS, an
IMS MPR region would normally have a single port number; that port would
provide access to one of a number of sockets associated with that IMS system. If
an MVS system contains multiple IMS subsystems, each IMS subsystem would
have a unique port number.

Representing host interfaces as domain names: Because dotted decimal or
colon-hexadecimal IP addresses are difficult to remember, TCP/IP also allows you
to represent host interfaces on the network as alphabetic names, such as
Alana.E04.IBM.COM or CrFre@AOL.COM. Every Domain Name has an equivalent
IP address or set of addresses. TCP/IP includes service functions

Chapter 1. Introduction to CICS TCP/IP 7

8

(GETHOSTBYNAME, GETHOSTBYADDR, GETADDRINFO, and GETNAMEINFO)
that helps you convert from one notation to another.

Network Byte Order: In the open environment of TCP/IP, Internet addresses
must be defined in terms of the architecture of the machines. Some machine
architectures, such as IBM mainframes, define the lowest memory address to be
the high-order bit, which is called big endian. However, other architectures, such
as IBM PCs, define the lowest memory address to be the low-order bit, which is
called little endian.

Network addresses in a given network must all follow a consistent addressing
convention. This convention, known as Network Byte Order, defines the bit-order
of network addresses as they pass through the network. The TCP/IP standard
Network Byte Order is big-endian. In order to participate in a TCP/IP network,
little-endian systems usually bear the burden of conversion to Network Byte Order.

Note: The socket interface does not handle application data bit-order differences.
Application writers must handle these bit order differences themselves.

A typical client-server program flow chart

Stream-oriented socket programs generally follow a prescribed sequence. See
[Figure 3 on page 9| for a diagram of the logic flow for a typical client and server.
As you study this diagram, keep in mind the fact that a concurrent server typically
starts before the client does, and waits for the client to request connection at step 3.
It then continues to wait for additional client requests after the client connection is
closed.

A typical client-server session
Step 1: Server and client create a stream socket s with the socket() call.

Step 2: (Optional for client) Sever bind socket s to a local address with the
bind() call.

Step 3: Server uses the listen() call to alert the TCP/IP machine of the
willingness to accept connections.
Step 4: Client connects socket s to a foreign host with the connect() call.

Step 5: Server accepts the connection and receives a second socket, for example
ns, with the accept() call.

Step 6 and 7: Server reads and writes data on socket ns, client reads and writes
data on socket s, by using send() and recv() calls, until all data has been
exchanged.

Step 8: Sever closes socket ns with the close() call. Client closes socket s and
end the TCP/IP session with the close() call. Go to step 5.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

CLIENT

Create a stream socket s with the socket()
call.

(Optional)

Bind socket s to a local address with the
bind()

Connect socket s to a foreign host with the
connect()

dedicated to the client.

6,7

Read and write data on socket s, using the

SERVER

Create a stream socket s with the socket()
call.

Bind socket s to a local address with the
bind()

With the listen() call, alert the TCP/IP
machine of your willingness to accept
connections.

For the server, socket s remains available
to accept new connections. Socket ns is

7,6

Accept the connection and receive a
second socket, for example ns, with the
accept()

send() and recv() calls, until all data has

»

been exchanged.

Close socket s and end the TCP/IP session
with the close() call.

Figure 3. A typical client-server session

Read and write data on socket ns, using
the send() and recv() calls, until all
data has been exchanged.

Close socket ns with the close() call.

Accept another connection from a client,
or close the original socket s with the
close()

Concurrent and iterative servers

An iterative server handles both the connection request and the transaction
involved in the call itself. Iterative servers are fairly simple and are suitable for

transactions that do not last long.

However, if the transaction takes more time, queues can build up quickly. In
[Figure 4 on page 10} after Client A starts a transaction with the server, Client B

cannot make a call until A has finished.

Chapter 1. Introduction to CICS TCP/IP 9

10

TCP/IP

Client B

Y

Iterative
Server

Client A P

Figure 4. An iterative server

So, for lengthy transactions, a different sort of server is needed — the concurrent
server, as shown in Figure Here, Client A has already established a
connection with the server, which has then created a child server process to handle
the transaction. This allows the server to process Client B's request without waiting
for A's transaction to complete. More than one child server can be started in this
way.

TCP/IP provides a concurrent server program called the CICS listener. It is
described in [“CICS application transaction (IBM listener)” on page 141

TCP/IP
. Concurrent
Client B Server
Y
child
Client A » server
process

Figure 5. A concurrent server

[Figure 3 on page 9|illustrates a concurrent server at work.

Basic socket calls

This topic contains an overview of the basic socket calls.

The following calls are used by the server:

SOCKET
Obtains a socket to read from or write to.

BIND Associates a socket with a port number.

LISTEN
Tells TCP/IP that this process is listening for connections on this socket.

SELECT
Waits for activity on a socket.

ACCEPT
Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from the
parent server task (listener) to the child server task (user-written application).

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

GIVESOCKET
Gives a socket to a child server task.

TAKESOCKET
Accepts a socket from a parent server task.

GETCLIENTID
Optionally used by the parent server task to determine its own address
space name (if unknown) prior to issuing the GIVESOCKET.

The following calls are used by the client:

SOCKET
Allocates a socket to read from or write to.

CONNECT
Allows a client to open a connection to a server’s port.

The following calls are used by both the client and the server:

WRITE
Sends data to the process on the other host.

READ Receives data from the other host.

CLOSE
Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see [Chapter 8, “Sockets extended|
[API,” on page 245.|

Server TCP/IP calls

To understand Socket programming, the client program and the server program
must be considered separately. In this topic, the call sequence for the server is
described; [“SOCKET server TCP/IP call”| discusses the typical call sequence for a
client. This is the logical presentation sequence because the server is usually
already in running before the client is started. The step numbers (such as5) in this
topic refer to the steps in [Figure 3 on page 9|

SOCKET server TCP/IP call

The server must first obtain a socket 1. This socket provides an end-point to which
clients can connect.

A socket is actually an index into a table of connections in the TCP/IP address
space, so TCP/IP usually assigns socket numbers in ascending order. In COBOL,
the programmer uses the SOCKET call to obtain a new socket.

The socket function specifies the address family of AF_INET or AF_INET6, the
type of socket (STREAM), and the particular networking protocol (PROTO) to use.
(When PROTO is set to zero, the TCP/IP address space automatically uses the
appropriate protocol for the specified socket type). Upon return, the newly
allocated socket's descriptor is returned in RETCODE.

For an example of the SOCKET call, see [“'SOCKET call” on page 386
BIND server TCP/IP call

At this point 2, an entry in the table of communications has been reserved for the
application. However, the socket has no port or IP address associated with it until
the BIND call is issued. The BIND function requires three parameters:

Chapter 1. Introduction to CICS TCP/IP 11

* The socket descriptor that was just returned by the SOCKET call
* The number of the port on which the server wants to provide its service
e The IP address of the network connection on which the server is listening

If the application wants to receive connection requests from any network
interface, the IP address should be set to zeros specifying INADDR_ANY for
IPv4 or the IPv6 unspecified address (in6addr_any).

For an example of the BIND call, see [“BIND call” on page 253

LISTEN server TCP/IP call

After the bind, the server has established a specific IP address and port upon
which other TCP/IP hosts can request connection. Now it must notify the TCP/IP
address space that it intends to listen for connections on this socket. The server
does this with the LISTEN3 call, which puts the socket into passive open mode.
Passive open mode describes a socket that can accept connection requests, but
cannot be used for communication. A passive open socket is used by a listener
program like the CICS IMS listener to await connection requests. Sockets that are
directly used for communication between client and server are known as active
open sockets. In passive open mode, the socket is open for client contacts; it also
establishes a backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin
accepting connections. Normally, only the number of requests specified by the
BACKLOG parameter are queued.

For an example of the LISTEN call, see [“LISTEN call” on page 329)
ACCEPT server TCP/IP call

At this time 5, the server has obtained a socket, bound the socket to an IP address
and port, and issued a LISTEN to open the socket. The server main task is now
ready for a client to request connection 4. The ACCEPT call temporarily blocks
further progress. *

The default mode for Accept is blocking. Accept behavior changes when the socket
is nonblocking. The FCNTL() or IOCTL() calls can be used to disable blocking for a
given socket. When this is done, calls that would normally block continue
regardless of whether the I/O call has completed. If a socket is set to nonblocking
and an I/0O call issued to that socket would otherwise block (because the 1/0O call
has not completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to
TCP/IP. When the connection is established, the ACCEPT call returns a new socket
descriptor (in RETCODE) that represents the connection with the client. This is the
socket upon which the server subtask communicates with the client. Meanwhile,
the original socket (S) is still allocated, bound and ready for use by the main task
to accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly calling
ACCEPT, a concurrent server can establish simultaneous sessions with multiple
clients.

4. Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is roughly analogous to
the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a socket is set to block, the calling program
is suspended until the expected event completes.

12 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

For an example of the ACCEPT call, see ["ACCEPT call” on page 250

GIVESOCKET and TAKESOCKET server TCP/IP call

The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. A server handling more than one client
simultaneously acts like a dispatcher at a messenger service. A messenger
dispatcher gets telephone calls from people who want items delivered, and the
dispatcher sends out messengers to do the work. In a similar manner, the server
receives client requests, and then spawns tasks to handle each client.

In UNIX-based servers, the fork() system call is used to dispatch a new subtask
after the initial connection has been established. When the fork() command is used,
the new process automatically inherits the socket that is connected to the client.

Because of architectural differences, CICS sockets does not implement the fork()
system call.Tasks use the GIVESOCKET and TAKESOCKET functions to pass
sockets from parent to child. The task passing the socket uses GIVESOCKET, and
the task receiving the socket uses TAKESOCKET. See [“GIVESOCKET and|
[TAKESOCKET calls” on page 17| for more information about these calls.

READ and WRITE server TCP/IP call

After a client has been connected with the server, and the socket has been
transferred from the main task (parent) to the subtask (child), the client and server
exchange application data, using various forms of READ/WRITE calls. See
["'READ/WRITE client TCP/IP calls (the conversation)” on page 14| for details
about these calls.

Client TCP/IP calls

The TCP/IP call sequence for a client is simpler than the one for a concurrent
server. A client has to support only one connection and one conversation. A
concurrent server obtains a socket upon which it can listen for connection requests,
and then creates a new socket for each new connection.

SOCKET client TCP/IP calls

In the same manner as the server, the first call 1 issued by the client is the
SOCKET call. This call causes allocation of the socket on which the client
communicates.

CALL "EZASOKET' USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

See [“SOCKET call” on page 386| for a sample of the SOCKET call.

CONNECT client TCP/IP calls

After the SOCKET call has allocated a socket to the client, the client can then
request connection on that socket with the server through use of the CONNECT
call 4.

The CONNECT call attempts to connect socket descriptor (S) to the server with an
IP address of NAME. The CONNECT call blocks until the connection is accepted
by the server. On successful return, the socket descriptor (S) can be used for
communication with the server.

This is essentially the same sequence as that of the server; however, the client does
not need to issue a BIND command because the port of a client has little
significance. The client needs to issue only the CONNECT call, which issues an
implicit BIND. When the CONNECT call is used to bind the socket to a port, the
port number is assigned by the system and discarded when the connection is

Chapter 1. Introduction to CICS TCP/IP 13

14

closed. Such a port is known as an ephemeral port because its life is very short as
compared with that of a concurrent server, whose port remains available for a
prolonged period of time.

See [“CONNECT call” on page 260| for an example of the CONNECT call.

READ/WRITE client TCP/IP calls (the conversation)

A variety of I/O calls is available to the programmer. The READ and WRITE,
READV and WRITEV, and SEND6 and RECV6 calls can be used only on sockets
that are in the connected state. The SENDTO and RECVFROM, and SENDMSG
and RECVMSG calls can be used regardless of whether a connection exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional
features of scatter and gather data. Scattered data can be located in multiple data
buffers. The WRITEV and SENDMSG calls gather the scattered data and send it.
The READV and RECVMSG calls receive data and scatter it into multiple buffers.

The WRITE and READ calls specify the socket S on which to communicate, the
address in storage of the buffer that contains the data (BUF), and the amount of
data transferred (NBYTE). The server uses the socket that is returned from the
ACCEPT call.

These functions return the amount of data that was either sent or received. Because
stream sockets send and receive information in streams of data, it can take more
than one call to WRITE or READ to transfer all of the data. It is up to the client
and server to agree on some mechanism of signaling that all of the data has been
transferred.

* For an example of the READ call, see ["'READ call” on page 335
+ For an example of the WRITE call, see [“WRITE call” on page 391

CLOSE TCP/IP call

When the conversation is over, both the client and server call CLOSE to end the
connection. The CLOSE call also deallocates the socket, freeing its space in the
table of connections. For an example of the CLOSE call, see [“CLOSE call” on pagge|

Other socket calls used for servers

Several other calls that are often used, particularly in servers, are the SELECT call,
the GIVESOCKET/TAKESOCKET calls, and the IOCTL and FCTL calls.

SELECT call

Applications such as concurrent servers often handle multiple sockets at
simultaneously. In such situations, the SELECT call can be used to simplify the
determination of which sockets have data to be read, which are ready for data to
be written, and which have pending exceptional conditions. An example of how
the SELECT call is used can be found in [Figure 6 on page 15|

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
01 MAXSOC PIC 9(8) BINARY VALUE 50.
01 TIMEOUT.
03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEQUT-MILLISEC PIC 9(8) BINARY.

01 RSNDMASK PIC X(50).
01 WSNDMASK PIC X(50).
01 ESNDMASK PIC X(50).
01 RRETMASK PIC X(50).
01 WRETMASK PIC X(50).
01 ERETMASK PIC X(50).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
RSNDMASK WSNDMASK ESNDMASK
RRETMASK WRETMASK ERETMASK
ERRNO RETCODE.

Figure 6. The SELECT call

In this example, the application sends bit sets (the xXSNDMASK sets) to indicate
which sockets are to be tested for certain conditions, and receives another set of
bits (the XRETMASK sets) from TCP/IP to indicate which sockets meet the
specified conditions.

The example also indicates a timeout. If the timeout parameter is NULL, this is the
C language API equivalent of a wait forever. (In Sockets Extended, a negative
timeout value is a wait forever.) If the timeout parameter is nonzero, SELECT waits
only the timeout amount of time for at least one socket to become ready under the
indicated conditions. This is useful for applications servicing multiple connections
that cannot afford to wait for data on a single connection. If the XSNDMASK bits
are all zero, SELECT acts as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the
xSNDMASKSs) and then wait (block) until one of the specified sockets is ready to
be processed. When the SELECT call returns, the program knows only that some
event has occurred, and it must test a set of bit masks (xRETMASKSs) to determine
which of the sockets had the event, and what the event was.

To maximize performance, a server should test only those sockets that are active.
The SELECT call allows an application to select which sockets are tested and for
what. When the Select call is issued, it blocks until the specified sockets are ready
to be serviced (or, optionally) until a timer expires. When the select call returns, the
program must check to see which sockets require service, and then process them.

To allow you to test any number of sockets with just one call to SELECT, place the
sockets to test into a bit set, passing the bit set to the select call. A bit set is a string
of bits where each possible member of the set is represented by a 0 or a 1. If the
member’s bit is 0, the member is not to be tested. If the member’s bit is 1, the
member is to be tested. Socket descriptors are actually small integers. If socket 3 is
a member of a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT
function: one bit set for sockets on which to receive data; another for sockets on
which to write data; and any sockets with exception conditions. The SELECT call
tests each selected socket for activity and returns only those sockets that have

Chapter 1. Introduction to CICS TCP/IP 15

16

completed. On return, if a socket's bit is raised, the socket is ready for reading data
or for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is
accustomed to bit strings that are counted from left to right. Instead, these bit
strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of
fullwords. If the highest socket descriptor you want to test is socket descriptor 3,
you have to pass a 4-byte bit string, because this is the minimum length. If the
highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as
INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in

Table 1. First fullword passed in a bit string in select

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 0 31 30 29 28 27 26 25 24
Byte 1 23 22 21 20 19 18 17 16
Byte 2 15 14 13 12 11 10 9 8
Byte 3 7 6 5 4 3 2 1 0

In these examples, standard assembler numbering notation is shown; the leftmost
bit or byte is relative 0.

If you want to test socket descriptor number 5 for pending read activity, you raise
bit 2 in byte 3 of the first fullword (X'00000020"). If you want to test both socket
descriptor 4 and 5, you raise both bit 2 and bit 3 in byte 3 of the first fullword
(X'00000030").

If you want to test socket descriptor number 32, you must pass two fullwords,
where the numbering scheme for the second fullword resembles that of the first.
Socket descriptor number 32 is bit 7 in byte 3 of the second fullword. If you want
to test socket descriptors 5 and 32, you pass two fullwords with the following
content: X'0000002000000001".

The bits in the second fullword represent the socket descriptor numbers shown in

Table 2. Second fullword passed in a bit string in select

Socket

descriptor

numbers

represented by

byte Bit 0 Bit1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

Byte 5 55 54 53 52 51 50 49 48

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 2. Second fullword passed in a bit string in select (continued)

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 6 47 46 45 44 43 42 41 40
Byte 7 39 38 37 36 35 34 33 32

If you develop your program in COBOL or PL/I, the EZACICO06 routine, which is
provided as part of TCP/IP Services, makes it easier to build and test these bit
strings. This routine translates between a character string mask (1 byte per socket)
and a bit string mask (1 bit per socket).

In addition to its function of reporting completion on Read/Write events, the
SELECT call can also be used to determine completion of events associated with
the LISTEN and GIVESOCKET calls.

* When a connection request is pending on the socket for which the main process
issued the LISTEN call, it is reported as a pending read.

* When the parent process has issued a GIVESOCKET, and the child process has
taken the socket, the parent's socket descriptor is selected with an exception
condition. The parent process is expected to close the socket descriptor when
this happens.

IOCTL and FCNTL calls

In addition to SELECT, applications can use the IOCTL or FCNTL calls to help
perform asynchronous (nonblocking) socket operations. An example of the use of
the IOCTL call is shown in ['TOCTL call” on page 317

The IOCTL call has many functions; establishing blocking mode is only one of its
functions. The value in COMMAND determines which function IOCTL performs.
The REQARG of 0 specifies nonblocking. (A REQARG of 1 would request that
socket S be set to blocking mode.) When this socket is passed as a parameter to a
call that would block (such as RECV when data is not present), the call returns
with an error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode
of the socket to nonblocking allows an application to continue processing without
becoming blocked.

GIVESOCKET and TAKESOCKET calls

The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. Tasks use the GIVESOCKET and TAKESOCKET
functions to pass sockets from parent to child.

For programs using TCP/IP Services, each task has its own unique 8-byte name.
The main server task passes four arguments to the GIVESOCKET call:

¢ The socket number it wants to give
* The domain of the socket
+ Its own name °

* The name of the task to which it wants to give the socket

5.1f a task does not know its address space name, it can use the GETCLIENTID function call to determine its unique name.

Chapter 1. Introduction to CICS TCP/IP 17

18

If the server does not know the name of the subtask that receives the socket, it
blanks out the name of the subtask. The first subtask calling TAKESOCKET with
the server's unique name receives the socket.

The subtask that receives the socket must know the main task's unique name and
the number of the socket that it is to receive. This information must be passed
from main task to subtask in a work area that is common to both tasks.

In IMS, the parent task name and the number of the socket descriptor are passed
from parent (listener) to child (MPP) through the message queue.

In CICS, the parent task name and the socket descriptor number are passed from
the parent (listener) to the transaction program by means of the EXEC CICS START
and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the
main task is not the socket descriptor that the subtask uses. When TAKESOCKET
accepts the socket that has been given, the TAKESOCKET call assigns a new socket
number for the subtask to use. This new socket number represents the same
connection as the parent's socket. (The transferred socket might be referred to as
socket number 54 by the parent task and as socket number 3 by the subtask;
however, both socket descriptors represent the same connection.)

Sockets given and taken must be of the same domain type. When GIVESOCKET is
giving an AF_INET socket, then TAKESOCKET must only take an AF_INET socket.
When GIVESOCKET is giving an AF_INET6 socket, then TAKESOCKET must only
take an AF_IENT6 socket. EBADF is set if the socket taken does not match the
domain in the tasksocket() request.

After the socket has successfully been transferred, the TCP/IP address space posts
an exceptional condition on the parent's socket. The parent uses the SELECT call to
test for this condition. When the parent task SELECT call returns with the
exception condition on that socket (indicating that the socket has been successfully
passed) the parent issues CLOSE to complete the transfer and deallocate the socket
from the main task.

To continue the sequence, when another client request comes in, the concurrent
server (listener) gets another new socket, passes the new socket to the new
subtask, dissociates itself from that connection, and so on.

To summarize, the process of passing the socket is accomplished in the following

way:

* After creating a subtask, the server main task issues the GIVESOCKET call to
pass the socket to the subtask. If the subtask's address space name and subtask
ID are specified in the GIVESOCKET call (as with CICS), only a subtask with a
matching address space and subtask ID can take the socket. If this field is set to
blanks (as with IMS), any MVS address space requesting a socket can take this
socket.

* The server main task then passes the socket descriptor and concurrent server's
ID to the subtask using some form of commonly addressable technique such as
the IMS Message Queue. the CICS START/RETRIEVE commands.

e The concurrent server issues the SELECT call to determine when the
GIVESOCKET has successfully completed.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

¢ The subtask calls TAKESOCKET with the concurrent server's ID and socket
descriptor and uses the resulting socket descriptor for communication with the
client.

* When the GIVESOCKET has successfully completed, the concurrent server issues
the CLOSE call to complete the handoff.

An example of a concurrent server is the CICS listener. It is described in |”CIC§|
[application transaction (IBM listener)” on page 141JFigure 5 on page 10| shows a
concurrent server.

CICS TCP/IP requirements

TCP/IP Services is not described in this document because it is a prerequisite for
CICS TCP/IP. However, much material from the TCP/IP library has been repeated
in this document in an attempt to make it independent of that library.

A TCP/IP host can communicate with any remote CICS or non-CICS system that
runs TCP/IP. The remote system can, for example, run a UNIX or Windows
operating system.

CICS TCP/IP components

In terms of CICS operation, the CICS TCP/IP feature is a task-related user exit
(TRUE) mechanism known as an adapter. The adapting facility that it provides is
between application programs that need to access TCP/IP and the manager of the
TCP/IP resource.

CICS TCP/IP has the following main components:

* The stub program is link-edited to each application program that wants to use
it. It intercepts requests issued by the calling application program and causes
CICS to pass control to the TRUE.

* The TRUE mechanism enables programs to pass calls to the subtask and to the
TCP/IP address space.
* CICS TCP/IP supports two methods for accessing TCP/IP
— The MVS subtask translates commands for accessing TCP/IP into a form
acceptable to the TCP/IP resource manager and then passes control to the

resource manager. The subtask also handles the MVS waits incurred during
socket calls.

- Using CICS Open Transaction Environment (OTE). The TRUE mechanism
accesses TCP/IP directly, not requiring an MVS subtask for blocking
commands.

¢ The Administration Routine contains the EXEC CICS ENABLE and DISABLE
commands that are used to install and withdraw the TRUE program.

* The Configuration System configures the interface and its listeners.

Summary of what CICS TCP/IP provides

[Figure 7 on page 20| shows how CICS TCP/IP allows your CICS applications to
access the TCP/IP network. It shows that CICS TCP/IP makes the following
facilities available to your application programs:

The socket calls
Socket calls are shown in Steps 1 and 2 in [Figure 7 on page 20}

Chapter 1. Introduction to CICS TCP/IP 19

The socket API is available in the C language and in COBOL, PL/I, or assembler
language. It includes the following socket calls:

Call type IP CICS TCP API function
ACCEPT, BIND, CLOSE, CONNECT, LISTEN, SHUTDOWN
Basic calls:
READ, READV, RECV, RECVFROM, RECVMSG, SEND, SENDMSG, SENDTO,

Read/Write calls: WRITE, WRITEV
FCNTL, FREEADDRINFO, GETADDRINFO,
Advanced calls: GETHOSTBYADDR, GETHOSTBYNAME, GETHOSTNAME,

GETNAMEINFO, GETPEERNAME, GETSOCKNAME,
GETSOCKOPT, IOCTL, NTOP, PTON, SELECT, SELECTEX,
SETSOCKOPT

IBM-specific calls: GETCLIENTID, GIVESOCKET, INITAPI,
INITAPIX, TAKESOCKET

Operating
CICS Sockets Applications Environment
1. C language z/08
socket calls
» User > z;oors |, TCP/P
4 Applications TCPAP network
2. COBOL,ASM.
PL/I calls cics
4. Conversion 3. Listener
routines

Figure 7. How user applications access TCP/IP networks with CICS TCP/IP (run-time environment)

CICS TCP/IP provides for both connection-oriented and connectionless (datagram)
services. CICS does not support the IP (raw socket) protocol.

The IBM listener

CICS TCP/IP includes a concurrent server application, called the IBM listener,
which is a CICS transaction that uses the EZACIC02 program to perform its
function.

CICS TCP/IP conversion routines

CICS TCP/IP provides the following conversion routines, which are part of the
base TCP/IP Services product:

¢ An EBCDIC-to-ASCII conversion routine that converts EBCDIC data to the
ASCII format used in TCP/IP networks and workstations. The routine is run by

20 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

calling module EZACIC04, which uses an EBCDIC-to-ASCII translation table as
described in |z/OS Communications Server: IP Configuration Reference]

* A corresponding ASCII-to-EBCDIC conversion routine, EZACICO05, which uses
an ASCII-to-EBCDIC translation table as described in |z/OS Communications|
[Server: IP Configuration Reference}

* An alternative EBCDIC-to-ASCII conversion routine. It is run by calling
EZACIC14, which uses the translation table listed in [“EZACIC14 program” on|

* A corresponding alternate ASCII-to-EBCDIC conversion routine, EZACIC15,
which uses the translation table listed in [“EZACIC15 program” on page 411 |

Tip: A sample translation routine is also supplied in the EZACICTR member of
the SEZAINST library. You can modify this member to use alternate
EBCDIC-to-ASCII and ASCII-to-EBCDIC translations, including custom
translations. See comments in the EZACICTR member for more details.

¢ A module that converts COBOL character arrays into bit-mask arrays used in
TCP/IP. This module, which is run by calling EZACICO6, is used with the socket
SELECT or SELECTEX call.

* A routine that decodes the indirectly addressed, variable-length list (hostent
structure) returned by the GETHOSTBYADDR and GETHOSTBYNAME calls.
This function is provided by calling module EZACICOS.

* A routine that decodes the indirectly addressed, variable-length list (addrinfo
structure) returned by the GETADDRINFO call. This function is provided by
calling module EZACICO09.

Rules for configuring the IBM-supplied listener for IPv6
The following rules apply when configuring the IBM-supplied listener for IPv6:

* You must enable the z/OS system that the IPv6 listener uses for IPv6. See
[Communications Server: IP Configuration Reference| for information on IPv6
system configuration.

* Because an IPv6 enabled listener uses the GIVESOCKET API function to give an
IPv6 socket to a child server transaction, you must enable that child server
transaction program to use IPv6 sockets. This requires that all API functions that
use a socket address structure be changed to use the larger IPv6 socket address
structure. See |Chapter 7, “C language application programming,” on page 165/ or
[Chapter 8, “Sockets extended API,” on page 245| for more information.

If the listener gives the accepted socket to the child server program, the child
server program must be able to take that socket. If the listener is defined as an
INETS® listener, the EBADF errno is issued if the child server's TAKESOCKET is
AF_INET. If the listener is defined as an INET listener, the EBADF errno is
issued if the child server's TAKESOCKET is AF_INET®6.

* The Security/Transaction Exit program allows the user to examine and change
certain pieces of data that are passed to the child server program by the listener.

illustrates the listener configuration in contrast with the connected
client's address family and indicates the contents of the IPv4 and IPv6 IP address
fields presented to the Security/Transaction Exit.

Table 3. Security/Transaction Exit program information fields

Listener's AF Connected Exit's Address Exit's Client's Exit's Client's Exit's Exit's

configuration Client's AF Family IPv4 address IPv6 address Listener's IPv4 Listener's IPv6
address address

not specified AF_INET AF_INET IPv4 addr Zeros IPv4 addr Zeros

AF_INET AF_INET AF_INET IPv4 addr Zeros IPv4 addr Zeros

Chapter 1. Introduction to CICS TCP/IP 21

Table 3. Security/Transaction Exit program information fields (continued)

Listener's AF Connected Exit's Address Exit's Client's Exit's Client's Exit's Exit's
configuration Client's AF Family IPv4 address IPv6 address Listener's IPv4 Listener's IPv6
address address
AF_INET6 AF_INET AF_INET6 Zeros IPv4 mapped Zeros IPv4 mapped
IPv6 addr IPv6 addr
AF_INET6 AF_INET6 AF_INET6 Zeros IPv6 addr Zeros IPv6 addr

Monitoring with CICS Explorer

The IBM listener for CICS TCP/IP updates the adapter information when a
transaction is started on behalf of an accepted connection. You can use the IBM
CICS Explorer to monitor and control these sessions. For more information about

the CICS Explorer®, see [CICS Explorer]

The following table describes the fields available to the CICS Explorer.

Table 4. Available parameters and values to the CICS Explorer

Parameter Value

ODAPTRID ID = z/OS COMMUNICATIONs SERVER CICS
SOCKETS LISTENER (CSKL)

ODAPTRDATA1 TCP = tcpip name

ODAPTRDATA2 LIP = local_ipaddress LPORT = local port number

ODAPTRDATA3 RIP = remote_ipaddress RPORT = remote port number

22 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-03.ibm.com/software/products/en/cics-explorer

Chapter 2. Setting up and configuring CICS TCP/IP

This topic describes the steps required to configure CICS TCP/IP.

It is assumed that both CICS and TCP/IP Services are already installed and

operating on MVS.

Before you can start CICS TCP/IP, do the following:

Task

See

Modify the CICS job stream to enable CICS
TCP/IP startup.

“Modifying CICS startup (MVS JCL)” on|

page 25|

Define additional files, programs, maps, and
transient data queues to CICS using resource
definition online (RDO) and the CICS
resource management utility DFHCSDUP
commands.

“Defining CICS TCP/IP resources” on pagel

26

Modify TCP/IP Services data sets.

“Modifying data sets for TCP/IP services”|

on page 50|

Use the configuration macro (EZACICD), to
build the TCP Configuration data set.

“Building the configuration data set with|

EZACICD” on page 52|

Use the configuration transaction (EZAC) to
customize the Configuration data set.

“Customizing the configuration transaction|

(EZAC)” on page 68|

Note: You can modify the data set while CICS is running by using EZAC. See

[“Customizing the configuration transaction (EZAC)” on page 68|

Modifications to the startup of CICS

[Figure 8 on page 24|illustrates the modifications required in the CICS startup job
stream to enable CICS TCP/IP startup. The numbers in the right margin of the JCL
correspond to the modifications that follow.

© Copyright IBM Corp. 2000, 2015 23

//DFHSTART PROC START='AUTO',

// INDEX1='cicshlq', High-level qualifier(s) for CICS/TS run time libs.
// INDEX2='cicshlq', High-level qualifier(s) for CICS/TS load libraries
// SYSHLQ='systemhlq', High-level qualifier(s) for z/0S system datasets
// TCPHLQ='tcpiphlq', High-level qualifier(s) for z/0S TCP/IP datasets
// USRHLQ='userhlq', High-level qualifier(s) for user libraries

// REGNAM='1A", Region name

// REG='0OK"', Storage required

// DUMPTR='NO', Dump/Trace analysis required, YES or NO

// RUNCICS='YES', CICS startup required, YES or NO

// OUTC="x", Print output class

// JVMMEMBR='DFHJVM', JVM member

// SIP=P Suffix of DFH$SIP member in the SYSIN dataset

J R R R T e T R T T PP P
//******************* EXECUTE CICS *kxkkkkkhkkhkkhkhkkhrkhrs
R R T e s T T T

//CICS EXEC PGM=DFHSIP,REGION=®,TIME=1440

// PARM='START=&START,SYSIN'

/1%

//SYSIN DD DISP=SHR,

// DSN=&INDEX1..SYSIN(DFH$SIPRSIP) <<<<<<<<<<<<<LLLLLLLLLLLLLL << <<<< 45
A

//DFHCMACD DD DSN=&INDEX..DFHCMACD,DISP=SHR

//***

//* THE CICS STEPLIB CONCATENATION
//* If Language Environment is required, the SCEERUN
/1* dataset is needed in STEPLIB or LNKLST

//***

//STEPLIB DD DSN=&INDEX2..SDFHAUTH,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=&USRHLQ..LINKLIB,DISP=SHR

[[Fkk ke ke kk Kk kKK I I IR h KRk kI Ik h Kk kK * ok R R
//* THE CICS LIBRARY (DFHRPL) CONCATENATION

//* If Language Environment is required, the SCEECICS
//* and SCEERUN datasets are needed in DFHRPL.

//* Refer to the Systems Definition Guide for

//* information on how to run with the native

//* runtime environments such as VS COBOL II.

[] Fk ko ke ek e o e ok o e ok ok ok ok ok ok ok ok ko e e e o o o o o ok ok ok o o o ok ok ok ok ok ok
//DFHRPL DD DSN=&INDEX2..SDFHLOAD,DISP=SHR

// DD DSN=CEE.SCEECICS,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=&USRHLQ..CICS.LOAD,DISP=SHR

// DD DSN=&TCPHLQ..SEZATCP,DISP=SHR <<<<<<<<<<<<<<<<<<<<<<<<]
// DD DSN=&USRHLQ..CICS.TABLLIB,DISP=SHR

//* THE AUXILIARY TEMPORARY STORAGE DATASET

//DFHTEMP DD DISP=SHR,

// DSN=&INDEX1..CNTL.CICS ®NAM..DFHTEMP
/1% THE INTRAPARTITION DATASET
//DFHINTRA DD DISP=SHR,

// DSN=&INDEX1..CNTL.CICS ®NAM..DFHINTRA
/1% THE AUXILIARY TRACE DATASETS
//DFHAUXT DD DISP=SHR,DCB=BUFNO=5,

// DSN=&INDEX1..CICS ®NAM..DFHAUXT
//DFHBUXT DD DISP=SHR,DCB=BUFNO=5,

// DSN=&INDEX1..CICS ®NAM..DFHBUXT

/1* THE CICS LOCAL CATALOG DATASET

Figure 8. JCL for CICS startup with the TCP/IP socket interface (part 1 of 2)

24 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

//DFHLCD DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM.DFHLCD

/1% THE CICS GLOBAL CATALOG DATASET

//DFHGCD DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHGCD

/1* AMP=('BUFND=5,BUFNI=20,BUFSP=122880")

/1* THE CICS LOCAL REQUEST QUEUE DATASET

//DFHLRQ ~ DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHLRQ

/1% DATASETS FOR JVM SUPPORT

//DFHCJVM DD DUMMY

//DFHJVM DD DISP=SHR,

// DSN=&INDEX2..SDFHENV (&JVMMEMBR)

//* EXTRAPARTITION DATASETS

//DFHCXRF DD SYSOUT=&0UTC

//LOGUSR DD SYSOUT=&0UTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
//MSGUSR DD SYSOUT=&0UTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)

//* IP CICS SOCKET INTERFACE MSGS
//TCPDATA DD SYSOUT=&0UTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136) <<<<<<< 2
/% RESOLVER TRACE

//SYSTCPT DD DSN=&USRHLQ..RES.TRACE,DISP=SHR <<<<<<<<<<<<<<L<<<LL<L<<
//*SYSTCPT DD SYSOUT=&0UTC <<<<<<<<<<<<<<<<LLLLLLLLLLLLLLLLLLLLLLL <LK
//SYSPRINT DD SYSOUT=&0UTC

//SYSTCPD DD DSN=&SYSHLQ..TCPPARMS (TCPDATA) ,DISP=SHR <<<<<<<<<<<<<<< 3
//CEEMSG DD SYSOUT=R0UTC <<<<<<<<<<<<<<L<LLLLLLLLLLLLLLLLLLLLLLLL LKL
//CEEOUT DD SYSOUT=&0UTC <<<<<<<<<<<<L<<LLLLLLLLLLLLLLLLLLLL<L<L<<<<< T
/1* THE DUMP DATASETS

//DFHDMPA DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHDMPA

//DFHDMPB DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHDMPB

//PRINTER DD SYSOUT=&0UTC,DCB=BLKSIZE=121

//* THE CICS SYSTEM DEFINITION DATASET

//DFHCSD DD DISP=SHR,

// DSN=&INDEX1..DFHCSD

o o

~N

Figure 9. JCL for CICS startup with the TCP/IP socket interface (part 2 of 2)

The z/OS Communication Server TCP/IP data set prefix names might have been
modified during installation. When you see the prefix hlg in this information,
substitute the prefix used in your installation.

Modifying CICS startup (MVS JCL)

These steps provides the minimum information that you need to modify CICS
startup.

Procedure

The following are the required modifications to the startup of CICS:

1. You must concatenate the data set SEZATCP to the DFHRPL DD. This data set
contains all the other IP CICS TCP/IP modules.

2. Add a TCPDATA DD entry for the IP CICS sockets output messages (see
[‘Defining the TCPM transient data queue for CICS TCP/IP” on page 38).

3. The SYSTCPD DD explicitly identifies which data set is to be used to obtain the
parameters defined by TCPIP.DATA. This is used to select the stack you want
to use if there are multiple TCP/IP stacks on this system. See
[Communications Server: IP Configuration Guide| for further information.

Chapter 2. Setting up and configuring CICS TCP/IP 25

4. The CICS System Initialization Table (SIT) override might contain the following

information. See the CICS system initialization information at
[http:/ /www-01.ibm.com /software /htp/cics /library /| for more details about
setting CICS SIT parameters:

* GMTEXT= WELCOME TO CICS/TS WITH z/0S CS TCP/IP SOCKETS INTERFACE

* MCT=SO
If you want IP CICS sockets to provide performance data then include the IP
CICS Sockets Monitor Control Table (MCT) entries in your MCT along with
any appropriate monitor SIT controls.

e PLTPI=SI
If you want IP CICS sockets to start at Program Load Table (PLT) phase 2
then include EZACIC20 in an appropriate startup PLT.

e PLTSD=SD
If you want IP CICS sockets to shutdown at PLT phase 1, then include
EZACIC20 in an appropriate shutdown PLT.

* PLTPIUSR=PLTUSER
PLT User ID. Specify the appropriate user ID to start the IP CICS socket
interface and listeners.

The following CICS SIT parameters affect the IP CICS socket interface when it
is configured to use the CICS Open Transaction Environment. CICS/TS V2R2
or later is required for this support.

¢ MAXOPENTCBS=50

When specifying the EZACICD TYPE=CICS,OTE=YES configuration option,
carefully consider this value; it is the size of the CICS managed open AP,
L8, TCB pool. This pool is used by the IP CICS socket interface and other
open API-enabled task-related user exits such as DB2®. Use the CEMT SET
DISPATCHER command to dynamically alter this value.

e FORCEQR

User programs that are defined to CICS as THREADSAFE are executed on
the quasi-reentrant TCB. Use the CEMT SET SYSTEM command to
dynamically alter this value.

6. Write the Resolver trace to either a dataset or JES spool.

7. The information is used by IP CICS C Sockets API programs for user messages.

Defining CICS TCP/IP resources
Make the following CICS definitions:

26

Transactions

Programs (see [‘Required program definitions to support CICS TCP/IP” on page]
28)
%sic Mapping Support (BMS) mapset (EZACICM, shown in [Figure 23 on page]
B2)
Files (see [“Updates to file definitions for CICS TCP/IP” on page 36)

Transient data queues (see [“Defining the TCPM transient data queue for CICS|
[TCP/IP” on page 38)

To ensure that the CICS system definition (CSD) file contains all necessary
socket-related resource definitions, you should execute a CSD upgrade
(DFHCSDUP) using member EZACICCT in SEZAINST. For information about
DFHCSDUP, visit this website: |http:/ /www-01.ibm.com /software /htp /cics/|

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

Note: For the enhanced listener, more temporary storage is needed to support
passing a larger amount of data to the security/transaction exit and to the child
server. Depending upon the size of the data defined in the listener configuration,
temporary storage should be adjusted accordingly.

Transaction definitions for CICS

Figures [Figure 10 on page 28} [Figure 11 on page 28| [Figure 12 on page 28 and
[Figure 13 on page 28| show the CICS CSD update (DFHCSDUP) commands to
define the four transactions. These commands can be found in

hlg. SEZAINST(EZACICCT).

EZAC Configure the socket interface
EZAO Enable the socket interface

EZAP Internal transaction that is invoked during termination of the socket
interface

CSKL Listener task. This is a single listener. Each listener in the same CICS
region needs a unique transaction ID.

In the definitions in [“Using storage protection when running with CICS 3.3.0 o1
a priority of 255 is suggested. This ensures timely transaction dispatching,
and (in the case of CSKL) maximizes the connection rate of clients requesting
service.

Using storage protection when running with CICS 3.3.0 or
later
When running with CICS 3.3.0 or later on a storage-protection-enabled machine,
the EZAP, EZAQO, and CSKL transactions must be defined with
TASKDATAKEY(CICS). If this is not done, EZAO fails with an ASRA abend code

indicating an incorrect attempt to overwrite the CDSA by EZACICO1. The contains
more information about storage protection with task-related user exits (TRUEs).

In [Figure 11 on page 28} [Figure 12 on page 28] and [Figure 13 on page 28| note that,
if the machine does not support storage protection or is not enabled for storage
protection, TASKDATAKEY(CICS) is ignored and does not cause an error.

Chapter 2. Setting up and configuring CICS TCP/IP 27

28

DEFINE TRANSACTION(EZAC)
DESCRIPTION(CONFIGURE SOCKETS INTERFACE)
GROUP (SOCKETS)

PROGRAM(EZACIC23)

TASKDATALOC (ANY) TASKDATAKEY (USER)

Figure 10. EZAC, transaction to configure the socket interface

DEFINE TRANSACTION(EZAO)
DESCRIPTION(ENABLE SOCKETS INTERFACE)
GROUP (SOCKETS)

PROGRAM(EZACIC00) PRIORITY(255)
TASKDATALOC (ANY) TASKDATAKEY (CICS)

Figure 11. EZAO, transaction to enable the socket interface

DEFINE TRANSACTION(EZAP)
DESCRIPTION(DISABLE SOCKETS INTERFACE)
GROUP (SOCKETS)

PROGRAM(EZACIC22) PRIORITY(255)
TASKDATALOC (ANY) TASKDATAKEY (CICS)

Figure 12. EZAP, transaction to disable the socket interface

DEFINE TRANSACTION(CSKL)
DESCRIPTION(LISTENER TASK)

GROUP (SOCKETS)

PROGRAM(EZACICO2) PRIORITY(255)
TASKDATALOC (ANY) TASKDATAKEY (CICS)

Figure 13. CSKL, Listener task transaction
Guidelines:

* Use of the IBM-supplied listener is not required.
* You can use a transaction name other than CSKL.

e The TASKDATALOC values for EZAO and EZAP and the TASKDATALOC

value for CSKL must all be the same.

* The user ID invoking the EZAO transaction to activate or deactivate the IP CICS
socket interface requires the UPDATE access to the EXITPROGRAM resource
when CICS command security is active. The user ID invoking the EZAC
transaction requires the UPDATE access to the EXITPROGRAM resource to
allow the EZAC transaction to perform an IPv6 run-time check when the AF is
changed to INET6. Failure to have at least the UPDATE access to the
EXITPROGRAM resource causes the IP CICS socket interface and listener to not

start or not stop.

Required program definitions to support CICS TCP/IP
Three categories of program are or could be required to support CICS TCP/IP:

* Required programs, CICS definition needed
* Optional programs, CICS definition needed
* Required programs, CICS definition not needed

Required programs, CICS definition needed

You need to define the following 11 programs and 1 mapset to run CICS TCP/IP,

or to provide supporting functions:

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZACICM
Has all the maps used by the transactions that enable and disable CICS
TCP/IP.

EZACICME
The U.S. English text delivery module.

EZACICO00
The connection manager program. It provides the enabling and disabling
of CICS TCP/IP through the transactions EZAO and EZAP.

EZACICO01
The task related user exit (TRUE).

EZACIC02
The listener program that is used by the transaction CSKL. This transaction
is started when you enable CICS TCP/IP through the EZAQO transaction.

Note: While you do not need to use the IBM-supplied listener, you do
need to provide a listener function.

EZACIC20
The initialization and termination front-end module for CICS sockets.

EZACIC21
The initialization module for CICS sockets.

EZACIC22
The termination module for CICS sockets.

EZACIC23
The primary module for the configuration transaction (EZAC).

EZACIC24
The message delivery module for transactions EZAC and EZAO.

EZACIC25
The domain name server (DNS) cache module.

Using storage protection when running CICS 3.3.0 or later

When running with CICS 3.3.0 or higher on a storage-protection-enabled machine,
all the required CICS TCP/IP programs (EZACIC00, EZACIC01, and EZACIC02)
must have EXECKEY(CICS) as part of their definitions. See
[01.ibm.com/software/htp/cics/library /| for more information about storage
protection with TRUESs.

Figures [Figure 14 on page 30} [Figure 15 on page 30} and [Figure 16 on page 30| show
EZACIC00, EZACICO01, and EZACICO02 defined with EXECKEY(CICS). Note that, if
the machine does not support storage protection or is not enabled for storage
protection, EXECKEY(CICS) is ignored and does not cause an error.

Chapter 2. Setting up and configuring CICS TCP/IP 29

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

DEFINE PROGRAM(EZACICO0)

DESCRIPTION(PRIMARY PROGRAM FOR TRANSACTION EZAO)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (TRANSIENT)

Figure 14. EZACICO0, connection manager program

DEFINE PROGRAM(EZACICO1)

DESCRIPTION(TASK RELATED USER EXIT <TRUE>)

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)
RELOAD(NO) RESIDENT(YES) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)

Figure 15. EZACICO1, task related user exit program

DEFINE PROGRAM(EZACICO2)

DESCRIPTION(IBM LISTENER)

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)
CONCURRENCY (THREADSAFE)

Figure 16. EZACICO2, listener program

DEFINE PROGRAM(EZACIC20)
DESCRIPTION(INITIALIZATION/TERMINATION FOR CICS SOCKETS)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD (NO) RESIDENT(NO) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (TRANSIENT)

Figure 17. EZACIC20, front-end module for CICS sockets

30 2z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

DEFINE PROGRAM(EZACIC21)

DESCRIPTION(INITIALIZATION MODULE FOR CICS SOCKETS)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(YES) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (TRANSIENT)

Figure 18. EZACIC21, initialization module for CICS sockets

DEFINE PROGRAM(EZACIC22)

DESCRIPTION(TERMINATION MODULE FOR CICS SOCKETS)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (TRANSIENT)

Figure 19. EZACIC22, termination module for CICS sockets

DEFINE PROGRAM(EZACIC23)

DESCRIPTION(PRIMARY MODULE FOR TRANSACTION EZAC)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE(TRANSIENT)

Figure 20. EZACIC23, primary module for transaction EZAC

DEFINE PROGRAM(EZACIC24)

DESCRIPTION (MESSAGE DELIVERY MODULE FOR CICS SOCKETS)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (TRANSIENT)

Figure 21. EZACIC24, message delivery module for CICS sockets

Chapter 2. Setting up and configuring CICS TCP/IP 31

32

DEFINE PROGRAM(EZACIC25)

DESCRIPTION(CACHE MODULE FOR THE DOMAIN NAME SERVER)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(YES) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)

Figure 22. EZACIC25, domain name server cache module

DEFINE MAPSET(EZACICM)

DESCRIPTION(MAPSET FOR CICS SOCKETS INTERFACE)
GROUP (SOCKETS)

RESIDENT(NO) USAGE(TRANSIENT) USELPACOPY (NO)
STATUS (ENABLED)

Figure 23. EZACICM, maps used by the EZAO transaction

DEFINE PROGRAM(EZACICME)

DESCRIPTION(US ENGLISH TEXT DELIVERY MODULE)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD (NO) RESIDENT(YES) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

Figure 24. EZACICME, U.S. English text delivery module

Optional programs, CICS transaction and program definition
needed

The six programs in this topic are optional. They are the supplied samples, and
they are also in SEZAINST.

EZACICSC
A sample IPv4 child server that works with the IPv4 listener (EZACICO02).
See [“EZACICSC” on page 561

EZACICSS
A sample IPv4 iterative server. EZACICSS establishes the connection
between CICS and TCP/IP stacks, and receives client requests from
workstations. See ["EZACICSS” on page 567

EZACIC6C
A sample IPv6 child server that works with either a standard or enhanced
IPv6 listener (EZACIC02). See [“EZACIC6C” on page 585

EZACIC6S
A sample IPv6 iterative server. EZACIC6S establishes the connection
between CICS and TCP/IP stacks, and receives client requests from
workstations. See ["EZACIC6S” on page 594

EZACICAC
A sample assembler child server that works with either a standard or
enhanced, IPv4 or IPv6 listener (EZACICO02). See ["EZACICAC” on page]

EZACICAS
A sample assembler iterative server that establishes the connection between
CICS and TCP/IP stacks, and accepts either ASCII or EBCDIC, IPv4 or
IPv6 (if IPv6 is enabled on the system) client connection requests. See
["'EZACICAS” on page 620

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

If these sample programs are used, they require DEFEHCSDUP definitions as shown
in [Figure 25| [Figure 26} [Figure 27 on page 34} [Figure 28 on page 34} [Figure 29 on|
[page 35| and [Figure 30 on page 35|

DEFINE TRANSACTION(SRV1)
DESCRIPTION(SAMPLE STARTED SERVER)
GROUP (SOCKETS)

PROGRAM (EZACICSC)

TASKDATALOC (ANY) TASKDATAKEY (USER)

DEFINE PROGRAM(EZACICSC)

DESCRIPTION(SAMPLE STARTED SERVER)

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)
LANGUAGE (COBOL) STATUS(ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

Figure 25. EZACICSC, sample IPv4 child server transaction and program definitions

DEFINE TRANSACTION(SRV2)
DESCRIPTION(SAMPLE SERVER)

GROUP (SOCKETS)

PROGRAM(EZACICSS)

TASKDATALOC (ANY) TASKDATAKEY (USER)

DEFINE PROGRAM(EZACICSS)

DESCRIPTION(SAMPLE SERVER FOR TRANSACTION SRV2)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (COBOL) STATUS(ENABLED) USAGE (NORMAL)

Figure 26. EZACICSS, sample iterative IPv4 server transaction and program definitions

Chapter 2. Setting up and configuring CICS TCP/IP 33

DEFINE TRANSACTION(SRV3)
DESCRIPTION(SAMPLE IPV6 CHILD SERVER)
GROUP (SOCKETS)

PROGRAM(EZACIC6C)

TASKDATALOC (ANY) TASKDATAKEY (USER)

DEFINE PROGRAM(EZACIC6C)

DESCRIPTION(SAMPLE IPV6 CHILD SERVER)

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)
LANGUAGE (COBOL) STATUS(ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

Figure 27. EZACIC6C, sample IPv6 child server transaction and program definitions

DEFINE TRANSACTION(SRV4)
DESCRIPTION(SAMPLE IPV6 SERVER)
GROUP (SOCKETS)

PROGRAM(EZACIC6S)

TASKDATALOC (ANY) TASKDATAKEY (USER)

DEFINE PROGRAM(EZACIC6S)

DESCRIPTION(SAMPLE IPV6 SERVER FOR TRANSACTION SRV4)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (COBOL) STATUS (ENABLED) USAGE (NORMAL)

Figure 28. EZACICG6S, sample iterative IPv6 server transaction and program definitions

34 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

DEFINE TRANSACTION(SRV5)
DESCRIPTION(SAMPLE ASSEMBLER CHILD SERVER)
GROUP (SOCKETS)

PROGRAM(EZACICAC)

TASKDATALOC (ANY) TASKDATAKEY (USER)

DEFINE PROGRAM(EZACICAC)

DESCRIPTION(SAMPLE ASSEMBLER CHILD SERVER)

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

Figure 29. EZACICAC, sample assembler child server transaction and program definitions

DEFINE TRANSACTION(SRV6)
DESCRIPTION(SAMPLE ASSEMBLER SERVER)
GROUP (SOCKETS)

PROGRAM(EZACICAS)

TASKDATALOC (ANY) TASKDATAKEY (USER)

DEFINE PROGRAM(EZACICAS)

DESCRIPTION(SAMPLE ASSEMBLER SERVER FOR TRANSACTION SRV6)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)

Figure 30. EZACICAS, sample assembler server transaction and program definitions

Required programs, CICS definition not needed
The following programs do not need to be defined to CICS:

EZACICAL
The application stub that invokes the TRUE and passes on the CICS
application’s socket call. This program is in SEZATCP.

EZACIC03
The MVS subtask that passes data between the CICS socket task and the
transport interface into TCP/IP for MVS. This program is in SEZALOAD.

Note: If the SEZALOAD load library is included in the LINKLIST, then it
does not need to be in the STEPLIB concatenation.

EZACICO07
The application stub that handles the C API for non-reentrant programs.
This program is in SEZATCP.

EZACIC17
The application stub that handles the C API for reentrant programs. This
program is in SEZATCP.

Threadsafe enablement for to support CICS

The programs in this topic can be defined to CICS as threadsafe. This is particulary
important when the IP CICS socket interface is using the CICS Open Transaction
Environment. See [“TYPE parameter for EZACICD” on page 54| for more
information about configuring the IP CICS socket interface to use CICS Open
Transaction Environment.

Chapter 2. Setting up and configuring CICS TCP/IP 35

EZACIC02
Enables the listener to initially execute on an open API TCB. Some TCB
switching still occurs because CICS commands that are not threadsafe are
used.

EZACICME
Enables the message module to initially execute on an open API TCB.
Some TCB switching still occurs because CICS commands that are not
threadsafe are used.

Sample programs: EZACICSC, EZACIC6C, EZACICAC

These sample child servers contain logic to determine when the IP CICS socket
interface is threadsafe, and executes the interface accordingly.

Use the DFHCSDUP commands in SEZAINST(EZACICPT) to change the CICS
CONCURRENCY setting for these program definitions on a CICS/TS V2R2 or later
system. EZACICPT was originally a duplicate of EZACICCT. It is being reused to
contain the ALTER PROGRAM commands.

ALTER PROGRAM(EZACICO2)
DESCRIPTION(IBM LISTENER THREADSAFE)
GROUP (SOCKETS)
CONCURRENCY (THREADSAFE)
ALTER PROGRAM(EZACICME)
DESCRIPTION(US ENGLISH TEXT DELIVERY MODULE THREADSAFE)
GROUP (SOCKETS)
CONCURRENCY (THREADSAFE)
ALTER PROGRAM(EZACICSC)
DESCRIPTION(SAMPLE IPV4 CHILD SERVER THREADSAFE)
GROUP (SOCKETS)
CONCURRENCY (THREADSAFE)
ALTER PROGRAM(EZACIC6C)
DESCRIPTION(SAMPLE IPV6 CHILD SERVER THREADSAFE)
GROUP (SOCKETS)
CONCURRENCY (THREADSAFE)
ALTER PROGRAM(EZACICAC)
DESCRIPTION(SAMPLE ASSEMBLER CHILD SERVER THREADSAFE)
GROUP (SOCKETS)
CONCURRENCY (THREADSAFE)

Figure 31. ALTER PROGRAM instructions

Use the CEDA INSTALL command to install the new PROGRAM definitions in
your CICS system. When you put a new version of the program in your library,
you do not need to install the definition again, unless attributes specified on the
definition have changed. To make the new version available, use the CEMT
transaction:

CEMT SET PROGRAM(pgmid) NEWCOPY

Updates to file definitions for CICS TCP/IP
The updates to CICS TCP/IP include two files:
* EZACONEFG, the sockets configuration file

* EZACACHE, which is required if you want to use the domain name server
cache function (EZACIC25)

36 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZACONFG
Use the following DFHCSDUP commands to define EZACONEFG file. The numbers
correspond to the notes that follow the sample.

DEFINE FILE(EZACONFG)
DESCRIPTION(CICS SOCKETS CONFIGURATION FILE)

GROUP (SOCKETS)

DSNAME(CICS.TCP.CONFIG) 1 LSRPOOLID(1) DSNSHARING (ALLREQS)
STRINGS (01)

REMOTESYSTEM(....) REMOTENAME(........)

RECORDSIZE(....) KEYLENGTH(...) 2

OPENTIME (STARTUP) 4STATUS (ENABLED)
DISPOSITION(SHARE) TABLE(NO) RECORDFORMAT (V)
READ(YES) BROWSE(YES) ADD(NO)

DELETE(NO) UPDATE(NO) 3

DATABUFFERS(2) INDEXBUFFERS(1) JNLSYNCWRITE(NO)

Figure 32. DFHCSDUP commands to define EZACONFG

Note:
1. Choose a DSName to fit installation standards.

2. If you want to have EZACONFG reside in a file owning region (FOR) and be
accessed indirectly from an application owning region (AOR), the systems
programmer must assure that no CICS socket modules can execute directly in
the FOR. That is, do not install any CICS TCP/IP resources other than
EZACONEFG in the FOR. Otherwise, EZACONEFG can become disabled and is
not accessible from the AOR

3. If you want to have the EZAC transaction residing in an AOR and indirectly
accessing EZACONFG in the FOR, the ADD, DELETE, and UPDATE
parameters in the FOR's file definition must be set to YES. The FOR therefore is
the only CICS region that can open EZACONFG. Thus, no sharing of
EZACONEFG between different CICS regions is possible.

4. Specify OPENTIME(FIRSTREF) to reduce the overhead that is incurred when
CICS opens non-essential datasets during CICS startup.

EZACACHE

Tip: You can use the caching function provided by the z/OS Communications
Server system resolver as an alternative to EZACACHE. For more information, see
[Chapter 3, “Configuring the CICS Domain Name Server cache,” on page 97 for
more details.

If you want to use the domain name server Cache function (EZACIC25) instead of
the system resolver, this definition is required.

Guidelines: The following guidelines apply when you define EZACACHE:

* If you require improved performance for domain name server lookups for both
IPv4 and IPv6 resources, you should use the system resolver caching function to
obtain the best performance results.

* Using the system resolver caching function provides the following benefits:

— After a host name is resolved, it is cached locally. All other applications that
run in the system can retrieve this information without increasing the
network communications.

— The system resolver caching function honors the time to live (TTL) value,
which indicates when the information for a resource record expires.

— The system resolver can cache IPv4 and IPv6 resources.

Chapter 2. Setting up and configuring CICS TCP/IP 37

Use the following DFHCSDUP commands to define EZACACHE file:

DEFINE FILE(EZACACHE)

DESCRIPTION(DOMAIN NAME SERVER CACHE CONFIGURATION FILE)
GROUP (SOCKETS)

DSNAME (EZACACHE) 1 LSRPOOLID(1) DSNSHARING (ALLREQS)
STRINGS(20) 2 OPENTIME(STARTUP) STATUS(ENABLED)
DISPOSITION(OLD) TABLE(USER) RECORDFORMAT (V)

READ(YES) BROWSE(YES) ADD(YES)

DELETE(YES) UPDATE(YES) MAXNUMRECS (4000)

DATABUFFERS (060) 3 INDEXBUFFERS(2000) 4 JNLSYNCWRITE(NO)
TABLE (USER) 5 MAXNUMRECS (4000) 6

Figure 33. DFHCSDUP commands to define EZACACHE

Note:

1. Choose a DSName to fit installation standards.

For strings, specify the maximum number of concurrent users.
Databuffers should equal strings multiplied by two.
Indexbuffers equals the number of records in the index set.

Although it is optional, you should specify TABLE(USER) because it makes the
process run faster. For more information about data tables, visit this website:
[http:/ /www-01.ibm.com /software/htp/cics/library /|

6. Maxnumrecs equals the maximum number of destinations queried.

ok~ wbd

Defining the TCPM transient data queue for CICS TCP/IP

[Figure 34 on page 39| shows the DFHCSDUP commands required to define the
TCPM transient data queue for CICS TCP/IP. For more information about

DFHCSDUP commands, visit this website: fhttp:/ /www-01.ibm.com /software /|
[htp /cics/library /|

The destination TCPM can be changed. If it is changed, it must match the name
specified in the ERRORTD parameter of the EZAC DEFINE CICS, the EZACICD
TYPE=CICS, or both (see [“Building the configuration data set with EZACICD” on|

38 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

DEFINE TDQUEUE(TCPM) GROUP(SOCKETS)
DESCRIPTION(USED FOR SOCKETS MESSAGES)

TYPE (EXTRA)
DATABUFFERS (1)
DDNAME (TCPDATA)

ERROROPTION (IGNORE)

OPENTIME (INITIAL)
TYPEFILE(OUTPUT)
RECORDSIZE(132)

RECORDFORMAT (VARIABLE)
BLOCKFORMAT (UNBLOCKED)

DISPOSITION(SHR)

DEFINE TDQUEUE(TRAA) GROUP(SOCKETS)
DESCRIPTION(USED FOR SOCKETS APPLICATION)

TYPE (INTRA)
ATIFACILITY(FILE)
TRIGGERLEVEL (1)
TRANSID (TRAA)

Figure 34. CICS TCP/IP Transient Data Queue definitions

The listener writes to the TCPM queue while CICS TCP/IP is enabled. In addition
to this, your own sockets applications can write to this queue using EXEC CICS
WRITEQ TD commands. Define an extrapartition transient data queue as shown in
Figure 34

The CICS startup JCL must include a DD statement for the extrapartition transient
data queue being defined (as in [Modifying CICS startup (MVS JCL)| line 3).

The listener transaction can start a server using a transient data queue, as
described in [“IBM listener input format” on page 142 The intrapartition transient
data queue definition in |[Figure 34| shows an entry for an application that is started
using the trigger-level mechanism of destination control.

CICS monitoring

The CICS Sockets Feature uses the CICS Monitoring Facility to collect data about
its operation. There are two collection points: the Task Related User Exit (TRUE)
and the listener. This data is collected as Performance Class Data. The TRUE uses
Event Monitoring Points (EMPs) with the identifier EZAO1 and the listener uses
Event Monitoring Points (EMPs) with the identifier EZA02. If the Monitor Control
Table entries are not defined, the following records are written to the CICS internal
trace when CICS Socket calls are made:

EXC - Invalid monitoring point

When this occurs, the TRUE mechanism and the listener disable use of this specific
EMP and no further data is written to SME. An EMP is dependent on its associated
entry in the MCT, so when an EMP is disabled it must be re-enabled as follows:

1. By adding entries to the Monitor Control table
2. Restarting CICS
3. Starting IP CICS socket interface and listener

You can tailor your MCT to monitor events only required by your installation. This
can be done by supplying only the MCT entries you require as the TRUE and the
listener disables those not coded and continue to execute EMPs matching the
entries in the MCT.

Chapter 2. Setting up and configuring CICS TCP/IP 39

40

See |http: / /www-01.ibm.com /software /htp/cics/library /| for more information
about the CICS monitoring facility.

Event monitoring points for the TRUE
The TRUE monitors call activity plus use of reusable, attached or OTE tasks. The
call activity is monitored by the following classes of calls:

* Initialization (INITAPI or other first call)

* Read (inbound data transfer) calls

* Write (outbound data transfer) calls

* Select calls

* All other calls

There are counters and clocks for each of these classes. In addition, there are
counters for use of reusable tasks, attached tasks and the use of open API tasks.
* Counter/Clock 1 - Initialization Call

* Counter/Clock 2 - Read Call

* Counter/Clock 3 - Write Call

* Counter/Clock 4 - Select Call

* Counter/Clock 5 - Other Call

* Counter 6 - Use of a reusable task

* Counter 7 - Use of an attached task

* Counter 8 - Use of an open API, L8, TCB

* Counter 9 - Number of times at TCBLIM

The following Monitor Control Table (MCT) entries use the event monitoring

points in the performance class used by the Task Related User Exit (TRUE). These

entries are in hlg.SEZAINST(EZACIMCT).

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/software/htp/cics/library/

Figure 35. The Monitor Control Table (MCT) for TRUE

DFHMCT TYPE=INITIAL,SUFFIX=S0

*

ENTRIES FOR IP CICS SOCKETS TASK-RELATED USER EXIT

DFHMCT TYPE=EMP, ID=(EZA01.01),CLASS=PERFORM,
PERFORM=SCLOCK(1),
CLOCK=(1,INIT,READ,WRITE,SELECT,OTHER)

DFHMCT TYPE=EMP, ID=(EZAO1.02),CLASS=PERFORM,
PERFORM=PCLOCK (1)

*

SOCKET FUNCTIONS READING DATA

DFHMCT TYPE=EMP,1D=(EZA01.03),CLASS=PERFORM,
PERFORM=SCLOCK (2)

DFHMCT TYPE=EMP,1D=(EZA01.04),CLASS=PERFORM,
PERFORM=PCLOCK (2)

*

SOCKET FUNCTIONS WRITING DATA

DFHMCT TYPE=EMP, ID=(EZAO1.05),CLASS=PERFORM,
PERFORM=SCLOCK(3)

DFHMCT TYPE=EMP, ID=(EZAO1.06) ,CLASS=PERFORM,
PERFORM=PCLOCK(3)

SOCKET FUNCTIONS SELECTING SOCKETS

DFHMCT TYPE=EMP, ID=(EZAO1.07),CLASS=PERFORM,
PERFORM=SCLOCK (4)

DFHMCT TYPE=EMP, ID=(EZAO1.08) ,CLASS=PERFORM,
PERFORM=PCLOCK (4)

OTHER SOCKET FUNCTIONS

DFHMCT TYPE=EMP,ID=(EZA01.09),CLASS=PERFORM,
PERFORM=SCLOCK (5)

DFHMCT TYPE=EMP,ID=(EZA@1.10),CLASS=PERFORM,
PERFORM=PCLOCK (5)

*

CICS TASK TERMINATION
DFHMCT TYPE=EMP,1D=(EZA01.13),CLASS=PERFORM,
PERFORM=(MLTCNT(1,5)),
COUNT=(1,TINIT,TREAD, TWRITE, TSELECT,TOTHER)
* REUSABLE SUBTASK POOL
DFHMCT TYPE=EMP,ID=(EZA01.11),CLASS=PERFORM,
PERFORM=ADDCNT (6,1) ,
COUNT=(6,REUSABLE ,ATTACHED,OPENAPI,TCBLIM)
* DYNAMICALLY DEFINED SUBTASKS

DFHMCT TYPE=EMP,ID=(EZA@1.12),CLASS=PERFORM,
PERFORM=ADDCNT (7,1)

* OPEN API

DFHMCT TYPE=EMP,1D=(EZA01.15),CLASS=PERFORM,
PERFORM=ADDCNT(8,1)

* TCBLIM

DFHMCT TYPE=EMP, ID=(EZAO1.16),CLASS=PERFORM,
PERFORM=ADDCNT (9,1)

CICS TASK INTERFACE TERMINATION

DFHMCT TYPE=EMP,ID=(EZA@1.14),CLASS=PERFORM,
PERFORM=(MLTCNT(10,4)),

COUNT=(10, TREUSABL, TATTACHE, TOPENAPI, TTCBLIM)

>

>

>

>

In the ID parameter, the following specifications are used:

Chapter 2. Setting up and configuring CICS TCP/IP 41

42

(EZA01.01)
Start of Initialization Call

(EZA01.02)
End of Initialization Call
(EZA01.03)
Start of Read Call
(EZA01.04)
End of Read Call
(EZA01.05)
Start of Write Call
(EZA01.06)
End of Write Call
(EZA01.07)
Start of Select Call
(EZA01.08)
End of Select Call
(EZA01.09)
Start of Other Call
(EZA01.10)
End of Other Call
(EZA01.11)
First call to Interface Using Reusable Task
(EZA01.12)
First call to Interface Using Attached Task
(EZA01.13)
CICS Task Termination
(EZA01.14)
CICS socket interface Termination
(EZA01.15)
First call to Interface Using an open API TCB
(EZA01.16)

Number of times at TCBLIM

Event monitoring points for the listener

The listener monitors the activities associated with connection acceptance and
server task startup. Because it uses the TRUE, the data collected by the TRUE can
be used to evaluate listener performance.

The listener counts the following events:

* Number of Connection Requested Accepted

* Number of Transactions Started

* Number of Transactions Rejected Due To Invalid Transaction ID

¢ Number of Transactions Rejected Due To Disabled Transaction

* Number of Transactions Rejected Due To Disabled Program

* Number of Transactions Rejected Due To Givesocket Failure

* Number of Transactions Rejected Due To Negative Response from Security Exit
* Number of Transactions Not Authorized to Run

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Number of Transactions Rejected Due to I/O Error
Number of Transactions Rejected Due to No Space
Number of Transactions Rejected Due to TD Length Error

The following Monitor Control Table (MCT) entries use the event-monitoring
points in the performance class used by the listener. These entries can be found in
hlg. SEZAINST(EZACIMCL).

* % X X X

ENTRIES FOR IP CICS SOCKETS LISTENER

NUMBER OF TIMES ACCEPT COMPLETED SUCCESSFULLY

DFHMCT TYPE=EMP,ID=(EZA02.01),CLASS=PERFORM, X
PERFORM=ADDCNT(1,1),COUNT=(1,CONN)

* NUMBER OF CHILD SERVER TASKS STARTED

DFHMCT TYPE=EMP,ID=(EZA02.02) ,CLASS=PERFORM, X
PERFORM=ADDCNT(2,1) ,COUNT=(2,STARTED)

*
+ NUMBER OF REQUESTS FOR UNDEFINED CHILD SERVER TRANSACTIONS

DFHMCT TYPE=EMP, ID=(EZA02.03),CLASS=PERFORM, X
PERFORM=ADDCNT (3,1) ,COUNT=(3, INVALID)

NUMBER OF REQUESTS FOR DISABLED CHILD SERVER TRANSACTIONS

DFHMCT TYPE=EMP,ID=(EZA02.04),CLASS=PERFORM, X
PERFORM=ADDCNT(4,1) ,COUNT=(4,DISTRAN)

NUMBER OF REQUESTS FOR DISABLED CHILD SERVER PROGRAMS

DFHMCT TYPE=EMP, ID=(EZA02.05) ,CLASS=PERFORM, X
PERFORM=ADDCNT(5,1) ,COUNT=(5,DISPROG)

*
* NUMBER OF GIVESOCKET FAILURES

DFHMCT TYPE=EMP, ID=(EZA02.06) ,CLASS=PERFORM, X
PERFORM=ADDCNT(6,1) ,COUNT=(6,GIVESOKT)

* NUMBER OF TRMS REJECTED BY THE SECURITY/USER EXIT

DFHMCT TYPE=EMP, ID=(EZA02.07),CLASS=PERFORM, X
PERFORM=ADDCNT(7,1) ,COUNT=(7,SECEXIT)

* NUMBER OF TIME CHILD SERVER TRANSACTION NOT AUTHORIZED

DFHMCT TYPE=EMP, ID=(EZA02.08) ,CLASS=PERFORM, X
PERFORM=ADDCNT(8,1) ,COUNT=(8,NOTAUTH)

NUMBER OF TRMS TD QUEUE I/0 ERROR

DFHMCT TYPE=EMP,ID=(EZA02.09),CLASS=PERFORM, X
PERFORM=ADDCNT(9,1) ,COUNT=(9, IOERR)

*
+* NUMBER OF TIMES NO SPACE ON CHILD SERVER TD QUEUE

DFHMCT TYPE=EMP,ID=(EZA02.10),CLASS=PERFORM, X
PERFORM=ADDCNT(10,1) ,COUNT=(10,NOSPACE)

NUMBER OF TIMES LENGTH ERROR ON CHILD SERVER TD QUEUE

Chapter 2. Setting up and configuring CICS TCP/IP 43

DFHMCT TYPE=EMP,ID=(EZA02.11),CLASS=PERFORM, X
PERFORM=ADDCNT(11,1) ,COUNT=(11,LENERR)

*

« LISTENER TERMINATION
*
DFHMCT TYPE=EMP, ID=(EZA02.12),CLASS=PERFORM, X
PERFORM= (MLTCNT(12,11)), X
COUNT=(12,TCONN, TSTARTED, TINVALID, TDISTRAN, TDISPROG, TGIVX
ESOK, TSECEXIT, TNOTAUTH, TIOERR, TNOSPACE,, TLENERR)
DFHMCT TYPE=FINAL
END

Figure 36. The Monitor Control Table (MCT) for listener

In the ID parameter, the following specifications are used:

(EZA02.01)

Completion of ACCEPT call
(EZA02.02)

Completion of CICS transaction initiation
(EZA02.03)

Detection of Invalid Transaction ID
(EZA02.04)

Detection of Disabled Transaction
(EZA02.05)

Detection of Disabled Program
(EZA02.06)

Detection of Givesocket Failure
(EZA02.07)

Transaction Rejection by Security Exit
(EZA02.08)

Transaction Not Authorized
(EZA02.09)

I/0O Error on Transaction Start
(EZA02.10)

No Space Available for TD Start Message
(EZA02.11)

TD Length Error
(EZA02.12)

Program Termination

Open TCB measurements

When migrating IP CICS sockets-enabled applications to exploit the CICS
Transaction Server Open Transaction Environment it is important to consider that
the CPU usage is spent on both the QR TCB and the L8 TCB.

The time spent on the QR TCB can be used on the following:

¢ Task startup

* Processing a non-threadsafe CICS command

* Processing application code when switched back to the QR TCB

44 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* Processing non-threadsafe subprograms
* Final task processing

The time spent on the L8 TCB can be used on the following:
* OPEN TCB processing

¢ Processing the EZASOKET call

* Running the application code

* Processing threadsafe CICS commands

* Processing threadsafe subprograms

* TCP/IP processing the socket call

If the application makes use of other non-CICS resources that are enabled to
exploit OTE (such as DB2) then that CPU usage time is also accumulated against
the QR and L8 TCBs.

If IP CICS sockets is not using OTE, then all the CPU time that is used to process
the EZASOKET call occurs on the private MVS subtasks and shows up on the SMF
30 record.

If IP CICS sockets is using OTE, then the CPU time that is used to process the
EZASOKET call shows up for the CICS transaction.

[Figure 37 on page 46| shows a EZASOKET threadsafe transaction. The numbers
correspond to the list that follows the figure.

Chapter 2. Setting up and configuring CICS TCP/IP 45

EZASOKET Threadsafe Transaction

QR TCB L8002 TCB
TRNB
EZASOKET
CHANGE MODE
3 EZASOHO03
v
e
EXEC CICS
4 Threadsafe
commands
A 4
S
6 EZASOKET
EZASOHO03
v
.
7 EXEC CICS
WRITEQTD
A4 CHANGE MODE
WRITEQ TD E
RETURN

Figure 37. EZASOKET threadsafe transaction

46

1.

w

N oo~

Represents the task startup and the application until it issues the first
EZASOKET call.

Actual time spent in Sockets Extended, processing the first EZASOKET call.

Time spent in the resource manager interface (RMI), processing the EZASOKET
call

Threadsafe application code and EXEC CICS commands running.
Time spent in Sockets Extended, processing the second EZASOKET call.
Time spent in the RMI, processing the second request.

Final application code, which issues a non-threadsafe EXEC CICS WRITEQ TD
command causing a change_mode back to the QR TCB.

Final task processing on the QR TCB.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

CICS program list table

You can enable automatic startup or shutdown of the CICS socket interface
through updates to the program list table (PLT). Put the EZACIC20 module in the
appropriate PLT to enable automatic startup and shutdown.

To start the IP CICS socket interface automatically, make the following entry in
PLTPI after the DFHDELIM entry:

PLT USED TO SUPPORT IP CICS SOCKETS STARTUP

L

DFHPLT TYPE=INITIAL,SUFFIX=SI
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

Add other IP CICS Socket PLT startup programs here...

* ok %

DFHPLT TYPE=FINAL
END

To shut down the IP CICS socket interface automatically (including all other IP
CICS sockets enabled programs), make the following entry in the PLTSD before the
DFHDELIM entry:

*

% PLT USED TO SUPPORT IP CICS SOCKETS SHUTDOWN

*

DFHPLT TYPE=INITIAL,SUFFIX=SD

*

* Add other IP CICS Socket PLT shutdown programs here...

*

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
DFHPLT TYPE=FINAL

END

System recovery table

The system recovery table (SRT) contains a list of codes for abends that CICS
intercepts. After intercepting one, CICS attempts to remain operational by causing
the offending task to abend.

You can modify the default recovery action by writing your own recovery
program. You do this using the XSRAB global user exit point within the system
recovery program (SRP). For programming information about the XSRAB exit, see
[http:/ /www-01.ibm.com/software /htp/cics /library /|

Note: Recovery is attempted only if a user task (not a system task) is in control at
the time the abend occurs.

DFHSRT macroinstruction types
You can code the following macroinstructions in a system recovery table:

e DFHSRT TYPE=INITIAL establishes the control section.

* DFHSRT TYPE=SYSTEM or DFHSRT TYPE=USER specifies the abend codes that
are to be handled.

* DFHSRT TYPE=FINAL concludes the SRT. For details about the TYPE=FINAL
macroinstruction, visit this website: [http:/ /www-01.ibm.com /software /htp /|

ics/library/

Control section:

Chapter 2. Setting up and configuring CICS TCP/IP 47

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

48

cics/library/

The DFHSRT TYPE=INITIAL macroinstruction generates the system recovery table
control section.

»>—DFHSRT—TYPE=INITIAL

Y
A

l—,—SUFFIX=—xx—|

For general information about TYPE=INITIAL macroinstructions, including the use
of the SUFFIX operand, visit this website: [http://www-01.ibm.com /software /htp /|

Abend codes:
The DFHSRT TYPE=SYSTEM and DFHSRT TYPE=USER macroinstructions indicate
the type of abend codes to be intercepted.

»>—DFHSRT—TYPE= SYSTEM ,—ABCODE=—/(codes)
USER——I_ L [NOt\J
,—RECOVER= YES

SYSTEM
The abend code is an operating system abend code corresponding to an MVS
Sxxx abend code. The abend code must be three hexadecimal digits (xxx)
representing the MVS system abend code Sxxx.

USER
The abend code is a user (including CICS) abend code corresponding to an
MVS Unnnn abend code. The abend code must be a decimal number (nnnn)
representing the user part of the MVS abend code Unnnn. This is usually the
same number as the CICS message that is issued before CICS tries to terminate
abnormally.

ABCODE=(codes)
ABCODE includes the abend code (or codes) to be intercepted. If you specify a
single abend code, parentheses are not required. To specify multiple abend
codes, separate the codes with commas.

RECOVER
Specifies whether codes are to be added or removed from the SRT. Code YES
to add the specified codes to the SRT. Code NO to remove the specified codes
from the SRT.

CICS intercepts the following abend codes automatically and tries to recover:

001,002,013,020,025,026,030,032,033,034,035,
036,037,03A,03B,03D,0F3,100,113,137,213,214,
237,283,285,313,314,337,400,413,437,513,514,
613,614,637,713,714,737,813,837,913,A13,A14,
B13,B14,B37,D23,D37,E37

Abend code 0F3 covers various machine check conditions. It also covers the
Alternate Processor Retry condition that can occur only when running on a
multiprocessor. CICS-supplied recovery code attempts to recover from
instruction-failure machine checks on the assumption that they are not permanent.
It also attempts to recover from Alternate Processor Retry conditions.

CICS tries to recover from these standard abend codes if you code the system
recovery table simply as follows. There is no need to list the standard codes
individually.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

DFHSRT TYPE=INITIAL
DFHSRT TYPE=FINAL
END

If you want CICS to handle other errors, you can code the SRT as follows:

DFHSRT TYPE=INITIAL

DFHSRT TYPE=SYSTEM,or USER,
ABCODE=(user or system codes),
RECOVER=YES

DFHSRT TYPE=FINAL

END

If you do not want CICS to try to recover after one or more of the standard abend
codes occurs, specify the codes with RECOVER=NO (or without the RECOVER
parameter).

Note: Recovery is attempted only if a user task (not a system task) is in control at
the time the abend occurs.

DFHSRT example

Following is an example of the coding required to generate a SRT:

DFHSRT TYPE=INITIAL, *
SUFFIX=K1

DFHSRT TYPE=SYSTEM, *
ABCODE=777, *

RECOVER=YES
DFHSRT TYPE=USER,

ABCODE=(888,999), *
RECOVER=YES

DFHSRT TYPE=USER, *
ABCODE=020

DFHSRT TYPE=FINAL

END

CICS TCP/IP security considerations
The following transactions should be added to your xCICSTRN RACF® class:

EZAC Configure sockets interface.

EZAO Enable sockets interface.

EZAP Disable socket interface started by the EZAO, STOP, and YES transactions.
CSKL Listener. Also, any user defined transactions that execute EZACIC02.

The EZAC and EZAO transactions are designed to be run with a terminal. If you
want a user to administer the IP CICS sockets configuration then you must grant
the user authorization to the EZAC transaction. If you want a user to manually
start and stop the IP CICS socket interface then you must grant the user
authorization to the EZAO and EZAP transactions . If you want a user to manually
start and stop the listener then you must grant the user authorization to the EZAO
and CSKL (and any user defined transaction defined to execute EZACIC02)
transactions.

For terminal tasks where a user has not signed on, the user ID is the CICS user ID
associated with the terminal and is either:

¢ The default CICS user ID as specified on the CICS parameter DFLTUSER coded
in the CICS System Initialization Table, SIT.

* A preset security user ID specified on the terminal definition.

Chapter 2. Setting up and configuring CICS TCP/IP 49

The IP CICS socket interface can be started and shutdown by placing EZACIC20 in
the PLT; therefore, an entry must be placed in your PLT RACF class to allow this
action. User ID's that are used to start the IP CICS socket interface include those
defined with the PLTPIUSR SIT macro should be allowed USE access to the
resource class where the IP CICS sockets transactions are defined. The CICS region
user ID must also be authorized to be the surrogate of the user ID specified on the
PLTPIUSR parameter.

User ID's used to manage the starting and stopping of the CICS socket interface
(EZAO), the listener (CSKL or user defined transactions executing EZACIC02) and
user application programs linking to the IP CICS domain name server module,
EZACICxx should at least be granted UPDATE access to the EXITPROGRAM

resource.

For more information about RACF security management in the CICS environment,
see [z/OS Security Server RACF Security Administrator's Guide]

Modifying data sets for TCP/IP services

To run CICS TCP/IP, you need to make entries in the hlg. PROFILE.TCPIP
configuration data set. ¢

hlq.PROFILE.TCPIP data set

You define the CICS region to TCP/IP on z/OS in the hlg.PROFILE.TCPIP data set
(described in [z/OS Communications Server: IP Configuration Reference|and |z/OS|
[Communications Server: IP Configuration Guide). In it, you must provide entries
for the CICS region in the PORT statement, as shown in [Figure 38 on page 51|

The format for the PORT statement is:
port_number TCP CICS_jobname

Write an entry for each port that you want to reserve for an application.
shows two entries, allocating port number 3000 for SERVA, and port
number 3001 for SERVB. SERVA and SERVB are the job names of our CICS regions.

These two entries reserve port 3000 for exclusive use by SERVA and port 3001 for
exclusive use by SERVB. The listener transactions for SERVA and SERVB should be
bound to ports 3000 and 3001 respectively. Other applications that want to access
TCP/IP on z/0OS are prevented from using these ports.

Ports that are not defined in the PORT statement can be used by any application,
including SERVA and SERVB if they need other ports.

6. Note that in this information, the abbreviation g stands for high level qualifier. This qualifier is installation dependent.

50 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

hlq.PROFILE.TCPIP

This is a sample configuration file for the TCPIP address space.
For more information about this file, see "Configuring the TCPIP
Address Space" and "Configuring the Telnet Server" in the
Customization and Administration Manual.

Reserve PORTs for the following servers.

NOTE: A port that is not reserved in this 1list can be used by
any user. If you have TCP/IP hosts in your network that
reserve ports in the range 1-1023 for privileged
applications, you should reserve them here to prevent users
from using them.

we we e Ve Be ws we we

PORT
3000 TCPSERVA ; CICS Port for SERVA 1
3001 TCP SERVB ; CICS Port for SERVB

Figure 38. Definition of the hlq. TCP/IP profile

Two different CICS listeners running on the same host can share a port. See the
discussion on port descriptions in [z/OS Communications Server: IP Configuration|
for more information about ports.

hlg.TCPIP.DATA data set

For CICS TCP/IP, you do not have to make any extra entries in hlg. TCPIP.DATA.
However, you need to check the TCPIPJOBNAME parameter that was entered during
TCP/IP Services setup. This parameter is the name of the started procedure used
to start the TCP/IP Services address space.

You need it when you initialize CICS TCP/IP (see [Chapter 4, “Managing IP CICS
[sockets,” on page 107). In [Figure 39 on page 52} TCPIPJOBNAME is set to TCPV3. The
default name is TCPIP.

Chapter 2. Setting up and configuring CICS TCP/IP 51

PR R R R R R R R R Rk Rk Rk R R R R R R Rk R
Name of Data Set: hlq.TCPIP.DATA

This data, TCPIP.DATA, is used to specify configuration
information required by TCP/IP client programs.

we we we we we we w
* ok 3k X X X

;**
; TCPIPJOBNAME specifies the name of the started procedure which was
; used to start the TCP/IP address space. TCPIP is the default.

TCPIPJOBNAME TCPV3

Figure 39. The TCPIPJOBNAME parameter in the hlq. TCPIP.DATA data set

Adding a z/OS UNIX System Services segment

The user ID associated with the CICS/TS region where z/OS IP CICS Sockets is
used requires a z/OS UNIX System Services segment. See the information in |z / O§|
Security Server RACF Security Administrator's Guide| and [z/OS UNIX System|
Services Planning| about defining groups and users, user profiles, and the OMVS
segment in user profiles for more details about specifying a segment.

Configuring the CICS TCP/IP environment

You need to create data for configuring the CICS TCP/IP environment.
Procedure

The Configuration File contains information about the CICS sockets environment.
The file is organized by two types of objects—CICS instances and listeners within
those instances. The creation of this data set is done in three stages:

1. Create the empty data set using VSAM IDCAMS (Access Method Services).

2. Initialize the data set using the program generated by the EZACICD macro.
The first two steps are described in [“JCL for the configuration macro” on page]

3. Add to or modify the data set using the configuration transaction EZAC. This
step is described in [“Customizing the configuration transaction (EZAC)” on|

Building the configuration data set with EZACICD

The configuration macro (EZACICD) is used to build the configuration data set.
This data set can then be incorporated into CICS using resource definition online
(RDO) and can be modified using the configuration transactions (see
[the configuration transaction (EZAC)” on page 68). The macro is keyword driven;
the TYPE parameter controls the specific function request. The data set contains
one record for each instance of CICS that it supports, and one record for each
listener. The following is an example of the macros required to create a
configuration file for two instances of the CICS socket interface listeners each. The
following configuration macro sample is in the SEZAINST data set.

7. The EZAC transaction is modeled after the CEDA transaction used by CICS Resource Definition Online (RDO).

52 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZACICD TYPE=INITIAL,
FILNAME=EZACICDF,

PRGNAME=EZACICDF

EZACICD TYPE=CICS,

APPLID=CICSPROD,
TCPADDR=TCPIP,
PLTSDI=YES,
NTASKS=20,
DPRTY=0,
CACHMIN=15,
CACHMAX=30,
CACHRES=10,
ERRORTD=CSMT,
TCBLIM=0,
OTE=NO,
TRACE=NO,
APPLDAT=YES,
SMSGSUP=NO,
TERMLIM=100

EZACICD TYPE=CICS,

APPLID=CICSPRDB,
TCPADDR=TCPIP,
PLTSDI=NO,
CACHMIN=15,
CACHMAX=30,
CACHRES=10,
ERRORTD=CSMT,
TCBLIM=12,
OTE=YES,
TRACE=NO,
APPLDAT=NO,
SMSGSUP=NO

EZACICD TYPE=LISTENER,

FORMAT=STANDARD,
APPLID=CICSPROD,
TRANID=CSKL,
PORT=3010,
AF=INET,
IMMED=YES,
BACKL0G=20,
NUMSOCK=50,
MINMSGL=4,
ACCTIME=30,
GIVTIME=30,
REATIME=30,
RTYTIME=10,
LAPPLD=YES,
TRANTRN=YES,
TRANUSR=YES,
SECEXIT=EZACICSE

EZACICD TYPE=LISTENER,

FORMAT=ENHANCED,
APPLID=CICSPROD,
TRANID=CSKM,
PORT=3011,
AF=INET,
IMMED=YES,
BACKLOG=20,
NUMSOCK=50,
ACCTIME=30,
GIVTIME=30,
REATIME=30,
RTYTIME=20,
LAPPLD=INHERIT,
CSTRAN=TRNI,
CSSTTYP=KC,
CSDELAY=000000,
MSGLEN=0,
PEEKDAT=NO,
MSGFORM=ASCII,
SECEXIT=EZACICSE

EZACICD TYPE=LISTENER,

FORMAT=STANDARD,
APPLID=CICSPRDB,

Figure 40. EZACICFG configuration file

Start of macro assembly input

DD name for configuration file

Name of batch program to run

CICS record definition

APPLID of CICS region not using OTE
Job/Step name for TCP/IP

PLT shutdown method is immediately
Number of subtasks

Subtask dispatch priority difference
Minimum refresh time for cache
Maximum refresh time for cache
Maximum number of resident resolvers
Transient data queue for error msgs
Open API TCB Limit

Open Transaction Environment

No CICS Trace records

Register Application Data

STARTED Messages Suppressed?

Subtask Termination Limit

CICS record definition

APPLID of CICS region using OTE
Job/Step name for TCP/IP

PLT shutdown method is deferred
Minimum refresh time for cache
Maximum refresh time for cache
Maximum number of resident resolvers
Transient data queue for error msgs
Open API TCB Limit

Use Open Transaction Environment

No CICS Trace records

No Application Data

STARTED Messages Suppressed?
Listener record definition

Standard Listener

Applid of CICS region

Transaction name for Listener

Port number for Listener

Listener Address Family

Listener starts up at initialization?
Backlog value for Listener

of sockets supported by Listener
Minimum input message Tength

Timeout value for Accept

Timeout value for Givesocket

Timeout value for Read

Wait 10 seconds for TCP to come back
Register Application Data

Is TRANUSR=YES conditional?
Translate user data?

Name of security exit program
Listener record definition

Enhanced Listener

Applid of CICS region

Transaction name for Listener

Port number for Listener

Listener Address Family

Listener starts up at initialization?
Backlog value for Listener

of sockets supported by Listener
Timeout value for Accept

Timeout value for Givesocket

Timeout value for Read

Wait 20 seconds for TCP to come back
Inherit interface setting

Name of child IPv4 server transaction
Child server startup type

Child server delay interval

Length of input message

Peek option

Output message format

Name of security exit program
Listener record definition

Standard listener

Applid of CICS region

>

DX X X X XX X X X X X XX X X X X X X DX X X X X X X X X X X X DX 3K X X X X X X X X X X X X X

DX DK DX X X X XX X X X X X X X X X X X X X

>

Chapter 2. Setting up and configuring CICS TCP/IP 53

54

TRANID=CS6L
PORT=3012,
AF=INET6,
IMMED=YES,
BACKL0G=20,
NUMSOCK=50,
MINMSGL=4,
ACCTIME=30,
GIVTIME=30,
REATIME=30,
RTYTIME=0,
LAPPLD=NO,
TRANTRN=YES
TRANUSR=YES

s Transaction name for listener

) Is TRANUSR=YES conditional?
. Translate user data?

Port number for listener

Listener Address Family

Listener starts up at initialization?
Backlog value for Tistener

of sockets supported by listener
Minimum input message Tength
Timeout value for Accept

Timeout value for Givesocket
Timeout value for Read

Listener will end when TCP ends

No Application Data

DX X X X X X X X X X X X X X

SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=LISTENER, Listener record definition
FORMAT=ENHANCED, Enhanced listener
APPLID=CICSPRDB, Applid of CICS region

) Transaction name for listener

TRANID=CS6M
PORT=3013,
AF=INET®6,
IMMED=YES,
BACKL0G=20,
NUMSOCK=50,
ACCTIME=30,
GIVTIME=30,
REATIME=30,
RTYTIME=0,

LAPPLD=INHERIT,
) Name of IPv6 child server transaction

CSTRAN=TRN6
CSSTTYP=KC,

CSDELAY=000000,

MSGLEN=0,
PEEKDAT=NO,

MSGFORM=ASCII,
USERID=USER0001, Listener User ID

Port number for listener

Listener Address Family

Listener starts up at initialization?
Backlog value for listener

of sockets supported by Tlistener
Timeout value for Accept

Timeout value for Givesocket

Timeout value for Read

Listener will end when TCP ends
Inherit interface setting

Child server startup type
Child server delay interval
Length of input message
Peek option

Output message format

DX DK DK DX XX XX XX XX X X X X X X X X X X X X X

SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=FINAL

End of assembly input

TYPE parameter for EZACICD

The TYPE parameter controls the function requests and can have the following
values:

Value Meaning

INITIAL
Initialize the generation environment. This value should be used only once
per generation and it should be in the first invocation of the macro. For
subparameters, see [“TYPE=INITIAL setting for the TYPE parameter.”|

CICS Identify a CICS object. This value corresponds to a specific instance of
CICS. Specifying this value creates a configuration record. For
subparameters, see ["TYPE=CICS setting for the TYPE parameter” on page]

LISTENER
Identify a listener object. This value creates a listener record. For
subparameters, see [“TYPE=LISTENER setting for the TYPE parameter” on|
IIE!!E;I;!!I

FINAL
Indicates the end of the generation. There are no subparameters.

TYPE=INITIAL setting for the TYPE parameter:
When TYPE=INITIAL is specified, the following parameters apply:

Value Meaning

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

PRGNAME
The name of the generated initialization program. The default value is
EZACICDE

FILNAME
The DDNAME used for the Configuration File in the execution of the
initialization program. The default value is EZACICDE.

TYPE=CICS setting for the TYPE parameter:
When TYPE=CICS is specified, the following parameters apply:

Value Meaning

APPLDAT
Indicates whether the IP CICS socket interface automatically registers
application data that is unique to IP CICS sockets TCP connections. All
socket-enabled CICS programs are affected. Listener programs are affected
based on the LAPPLD configuration option. See the listener's LAPPLD
configuration option for information about configuring listeners to register
application data. Possible values for the APPLDAT option are YES and NO;
NO is the default when the APPLDAT parameter is not specified. Specify
the value APPLDAT=YES to automatically apply application data to the
TCP connection when the following socket commands are invoked:

* Before LISTEN or listen()

* Before GIVESOCKET for the IBM listener
» After TAKESOCKET or takesocket()

* After CONNECT or connect()

The IBM listener's optional security exit can override this setting for each
accepted connection that is to be given to a child server. Overriding the
setting enables application data that is specific to the child server to be
registered against the accepted connections. For more information about
using the security exit to register application data, see [Chapter 6, “Writing]
applications that use the IP CICS sockets API,” on page 129 and
Application data|in |z/OS Communications Server: IP Programmer's Guide|
and Reference] For more information about programming applications, see
Application data in [z/OS Communications Server: IP Programmer's Guide|
land Reference} The associated application data is made available on the
Netstat ALL/-A, ALLConn/-a and COnn/-c reports, in the SMF 119 TCP
connection termination records, and through the network management
interface (NMI) on the GetTCPListeners and GetConnectionDetail poll
requests. The Netstat and NMI interfaces support new filters for selecting
sockets based on wildcard comparisons of the application data. This
support can assist in locating application sockets during problem
determination and can aid capacity planning and accounting applications
to correlate TCP/IP SMF resource records with other applications records.
It is the responsibility of the using applications to record the content,
format, and meaning of the associated data.

APPLID
The APPLID of the CICS address space in which this instance of
CICS/sockets is to run. This field is mandatory.

CACHMAX
The maximum refresh time for the domain name server cache in minutes.
This value depends on the stability of your network, that is, the time you
would expect a domain name to have the same Internet address. Higher

Chapter 2. Setting up and configuring CICS TCP/IP 55

56

values improve performance but increase the risk of getting an incorrect
(expired) address when resolving a name. The value must be greater than
CACHMIN. The default value is 30.

CACHMIN

The minimum refresh time for the domain name server cache in minutes.
This value depends on the stability of your network, that is, the time you
would expect a domain name to have the same Internet address. Higher
values improve performance but increase the risk of getting an incorrect
(expired) address when resolving a name. The value must be less than
CACHMAX. The default value is 15.

CACHRES

DPRTY

The maximum number of concurrent resolvers desired. If the number of
concurrent resolvers is equal to or greater than this value, refresh of cache
records does not happen unless their age is greater than the CACHMAX
value. The default value is 10.

The difference between the dispatching priority of the subtasks and the
attaching CICS task. Use this parameter to balance the CPU demand
between CICS and the socket interface subtasks. Specifying a nonzero
value causes the subtasks to be dispatched at a lower priority than CICS.
Use the default value of 0 unless tuning data indicates that CICS is
CPU-constrained. This value should be specified as 0 or not specified when
OTE=YES is specified because the pool of reusable MVS subtasks is not
needed. If DPRTY is specified as a nonzero value and OTE=YES, DPTRY is
forced to 0.

ERRORTD

The name of a Transient Data destination to which error messages are
written. The default value is CSMT. A check is made when the IP CICS
socket interface is initialized to determine whether the transient data
destination is defined to CICS. If the destination is not defined, the
interface sends its messages to CSMT.

NTASKS

OTE

The number of reusable MVS subtasks that are allocated for this execution.
This number should approximate the highest number of concurrent CICS
transactions using the TCP/sockets interface, excluding listeners. The
default value is 20. This value should be specified as 0 or not specifed
when OTE=YES is specified because the pool of reusable MVS subtasks is
not needed. If NTASKS is specified as a nonzero value and OTE=YES,
NTASKS is forced to 0.

The value for OTE is YES or NO (the default). A value of YES causes the
IP CICS sockets task-related user exit to execute using the CICS Open
Transaction Environment.

Note: OTE is supported on CICS/TS V2R2MO0 and later. If OTE=YES is
specified on a pre-CICS/TS V2R2MO system, the IP CICS socket interface
fails initialization.

When OTE=YES is specified, CICS/TS switches all EZASOKET calls and
all IP CICS C socket functions from the QR TCB to an L8 TCB. IP CICS
sockets applications must be coded using threadsafe programming
practices as defined by CICS, and must be defined to CICS as threadsafe.
A value of NO causes IP CICS sockets to continue executing EZASOKET

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

calls on an MVS subtask managed by the IP CICS sockets interface. If
OTE=YES, the values of NTASKS, DPRTY and TERMLIM are forced to 0 (if
specified).

Table 5 shows the relationships between the configuration options affected
by OTE.

Table 5. Configuration options affected by OTE

OTE TCBLIM NTASKS DPRTY TERMLIM
YES 0 then If specified, |If specified, |If specified,
« No IP CICS sockets forced to 0 forced to 0 forced to 0
applications are subject
to TCBLIM
* [P CICS sockets
applications are subject
to MAXOPENTCBS
YES TCBLIM= MAXOPENTCBS | If specified, If specified, |If specified,
forced to 0 forced to 0 forced to 0
As MAXOPENTCBS takes
precedence over TCBLIM,
IP CICS sockets
applications are suspended
by CICS/TS.
YES 1-MAXOPENTCBS If specified, If specified, |If specified,
forced to 0 forced to 0 forced to 0
Not numeric, then MNOTE
12
NO 0 Using MVS Using MVS | Using MVS
subtasks subtasks subtasks
NO 1-MAXOPENTCBS, forced |Using MVS Using MVS | Using MVS
to 0 subtasks subtasks subtasks
If neither YES or
NO, then
MNOTE 12
PLTSDI

The IP CICS sockets program load table (PLT) shutdown immediate
configuration option. When IP CICS sockets is being shutdown using the
EZACIC20 PLT program, then the PLTSDI parameter specifies whether the
interface should shutdown immediately. The values are NO and YES. The
default, if not specified, is NO. The value NO specifies a deferred
shutdown. The value YES specifies an immediate shutdown. If the PLTSDI
parameter is not specified then a deferred shutdown is performed. A
deferred shutdown enables all IP CICS sockets tasks to end gracefully. An
immediate shutdown directs all IP CICS sockets tasks to be immediately
terminated.

SMSGSUP

The value for SMSGSUP is either YES or NO (the default). A value of YES
causes messages EZY1318E, EZY1325I, and EZY1330I to be suppressed. A
value of NO allows these messages to be issued. If OTE=YES and when
SMSGSUP is specified as YES then no TCB switch from the open API TCB
to the QR TCB occurs for the messages.

For detailed information about CICS sockets messages, see

[“CICS sockets messages,” on page 469 |

Chapter 2. Setting up and configuring CICS TCP/IP 57

TCBLIM
Specifies the maximum number of open API (L8) TCBs that can be used by
the IP CICS socket interface to support socket calls, which, in turn, limits
the maximum number of concurrently supported socket calls.

Note: TCBLIM is supported on CICS/TS V2R2MO and later. If OTE=YES is
specified on a pre-CICS/TS V2R2MO0 system then the IP CICS socket
interface fails initialization.

The CICS MAXOPENTCBS system initialization parameter controls the
total number of open API, L8, TCBs that the CICS region can have in
operation at any one time. It is relevant when CICS is connected to DB2
Version 6 or later, when open API TCBs are used to run threads into DB2,
and when open API TCBs are used to support sockets extended calls into
TCP/IP. In the open transaction environment, TCBLIM controls how many
open API TCB's can be used by the IP CICS sockets task-related user exit
to support socket calls into TCP/IP. The listener is not subjected to this
limitation; however, it is subject to MAXOPENTCBS. This allows listeners
to be started prohibiting a possible denial of service. If MAXOPENTCBS is
reached then no more open API TCBs are available in the CICS region and
the IP CICS sockets task-related user exit cannot obtain an open TCB for its
use. The default value for TCBLIM is 0. If this value is set to zero and
OTE=YES, then the IP CICS socket interface uses the entire open API (L8)
pool. This value should be set high enough to accommodate the number of
concurrently active child server tasks and the number of concurrently
active outbound clients. TCBLIM can be set from 0 to the value specified
by CICS's MAXOPENTCBS. If OTE=NO and TCBLIM>0, TCBLIM is forced
to 0.

A check is made when the IP CICS socket interface is initialized to
determine if TCBLIM>MAXOPENTCBS. If so then TCBLIM is dynamically
set to the value specified by MAXOPENTCBS and message EZY1355I is
issued and the interface continues to initialize. Use the EZAC configuration
transaction to update the configuration to reflect this change or adjust the
offending TYPE=CICS,TCBLIM entry in your configuration macro.

Use the EZAO Operator transaction to inquire on the current IP CICS
socket interface levels and also to dynamically alter the value specified by
TCBLIM. When TCBLIM is reached, message EZY1356E is issued. Message
EZY13601 is issued after the TCBLIM condition is relieved. See
page 57| for more information.

TCPADDR
The name of the z/OS Communication Server TCP/IP address space.

TERMLIM
During a quiescent termination of the CICS sockets interface, the
termination program posts unused reusable subtasks (see NTASKS) for
termination. TERMLIM specifies the maximum number of these posts that
can be issued in a single second. Too low of a TERMLIM value can cause
termination to take a long time to complete. Too high of a TERMLIM value
can cause the CICS region to ABEND due to storage shortage. The default
is 100. A value of 0 causes the default value of 100 to be used. This value
should be specified as zero or not specified when OTE=YES is specified as
the pool of reusable MVS subtasks are not needed. If TERMLIM is
specified as a nonzero value and OTE=YES, TERMLIM is forced to zero.

TRACE
The value for TRACE is either YES (the default) or NO. A value of NO will

58 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

direct the TRUE and the listener to not generate CICS AP trace records
even if CICS trace is active. The value of YES will direct the TRUE and the
listener to generate CICS AP trace records which also requires that CICS
Trace be active. Trace records are generated only if CICS tracing is active
and TRACE=YES. See the CICS Transaction Server for z/OS CICS Supplied
Transactions publication for guidance on enabling and disabling the CICS
trace. See the CICS Transaction Server for z/OS CICS Operations and Utilities
Guide for guidance printing the CICS trace. Use the

EZAO,START | STOP,TRAce to dynamically enable or disable tracing.
Suppressing the generation of trace records after IP CICS sockets
application programs are tested and debugged or for normal operations
can improve performance.

TYPE=LISTENER setting for the TYPE parameter:
When TYPE=LISTENER is specified, the following parameters apply:

ACCTIME

AF

The time in seconds this listener waits for a connection request before
checking for a CICS/sockets shutdown or CICS shutdown. The default
value is 60. A value of 0 results in the listener continuously checking for a
connection request without waiting. Setting this to a high value reduces the
resources used to support the listener on a lightly loaded system and
consequently lengthens shutdown processing. Conversely, setting this to a
low value increases resources used to support the listener but facilitate
shutdown processing.

Determines whether the listener being defined supports IPv6 partners and
is able to give an IPv6 socket descriptor to an IPv6 child server program.
INET6 indicates that the listener gives an IPv6 socket to the child server
program. INET, the default, indicates that the listener gives an IPv4 socket
to the child server program. Ensure that the child server program
performing the TAKESOCKET command matches the domain of the socket
being given by the listener.

APPLID

The APPLID value of the CICS object for which this listener is being
defined. If this is omitted, the APPLID from the previous TYPE=CICS
macro is used.

BACKLOG

The number of unaccepted connections that can be queued to this listener.
The default value is 20.

Note: The BACKLOG value specified on the LISTEN call cannot be greater
than the value configured by the SOMAXCONN statement in the stack's
TCP/IP profile (default=10); no error is returned if a greater BACKLOG
value is requested. If you want a larger backlog, update the SOMAXCONN
statement. See |[z/0S Communications Server: IP Configuration Reference
for details.

CSDELAY

This parameter is specific to the enhanced version of the listener and is
applicable only if CSSTTYPE is IC. It specifies the delay interval to be used
on the EXEC CICS START command, in the form hhmmss
(hours/minutes/seconds).

CSSTTYP

This parameter is specific to the enhanced version of the listener and

Chapter 2. Setting up and configuring CICS TCP/IP 59

60

specifies the default start method for the child server task. This can be
overridden by the security/transaction exit. Possible values are IC, KC, and
TD.

IC Indicates that the child server task is started using EXEC CICS
START with the value specified by CSDELAY (or an overriding
value from the security/transaction exit) as the delay interval.

KC Indicates that the child server task is started using EXEC CICS
START with no delay interval. This is the default.

TD Indicates that the child server task is started using the EXEC CICS
WRITEQ TD command, which uses transient data to trigger the
child server task. If OTE=YES, the listener incurs a TCB switch
from an open API TCB to the QR TCB when starting the specified
child server transaction.

CSTRAN

This parameter is specific to the enhanced version of the listener and
specifies the default child server transaction that the listener starts. This
can be overridden by the security/transaction exit. The child server
transaction is verified to be defined to CICS and enabled when the listener
is started by the EZAO Operator transaction.

FORMAT

The default value of STANDARD indicates that this is the original CICS
listener that requires the client to send the standard header. The value of
ENHANCED indicates that this is the enhanced CICS listener that does not
expect the standard header from the client.

GETTID

The GETTID parameter is provided for the CICS listener that
communicates with clients using SSL/TLS (Secure Socket Layer/Transport
Layer Security) services available with the Application Transparent
Transport Layer Security (AT-TLS) function provided by the TCP/IP stack.
Specifically, it allows the listener to receive the user ID that is associated in
the system's security product (such as RACF), with the connecting client's
SSL certificate. This allows the listener to pass this user ID to the security
exit where it can be accepted or overridden.

The GETTID values have the following meaning for the listener:

NO The listener does not request the client's certificate or user ID. This
is the default action for GETTID.

YES The listener accepts the connection and asks for the client's
certificate and user ID if available. If available, the address and the
length of the client's certificate are sent to the security exit
COMMAREA (if the security exit is specified) to signify that the
client's certificate exists along with any received user ID. This
allows the security exit to examine the contents. If the user ID is
not extracted (either the client certificate does not exist or the client
certificate does not contain a user ID), the security exit
COMMAREA USERID field contains binary zeros.

GETTID values of YES should be specified only if the following is
true:

* AT-TLS is currently enabled by the TCP/IP stack with the TTLS
parameter specified on the TCPCONFIG TCP/IP profile
statement.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* AT-TLS policy is in effect for connections processed by this
listener, and the TTLSEnvironmentAction or
TTLSConnectionAction statement associated with the listener
must specify the HandshakeRole as ServerWithClientAuth. The
level of client authentication for a connection is determined by
the TTLSEnvironmentAdvancedParms statement ClientAuthType
parameter.

If GETTID is YES then the listener attempts to obtain that user ID.
If a user ID is successfully obtained and the start type is task
control (KC) or interval control (IC), the listener uses that to
initialize the user ID of the child server. The security exit can
override it. If there is no security exit or the security exit chooses
not to override it, that is the user ID of the child server task unless
the start type is transient data (TD).

Note: The user ID under which the listener executes must have
CICS RACF surrogate authority to any user ID that it uses to
initialize the child server.

See lApplication Transparent Transport Layer Security (AT-TLS)|
|tOEiC| of thez/OS Communications Server: IP Configuration Guide]
for more information.

GIVTIME
The time in seconds this listener waits for a response to a GIVESOCKET. If
this time expires, the listener assumes that either the server transaction did
not start or the TAKESOCKET failed. At this time, the listener sends the
client a message indicating the server failed to start and close the socket
(connection). If this parameter is not specified, the ACCTIME value is used.

IMMED
Specify YES or NO. YES indicates this listener is to be started when the
interface starts. No indicates this listener is to be started independently
using the EZAO transaction. The default is YES.

LAPPLD
This optional configuration option indicates whether the IP CICS socket
interface automatically registers IP CICS sockets-unique application data
for the listener's connection being defined. Both the IBM listener and user
written listeners are affected. When defined for the IBM listener then it
additionally registers application data against the accepted connections to
be given to a child server. Only the listener being defined is affected. The
possible values for LAPPLD are YES, NO, or INHERIT (the default). If the
LAPPLD option is not specified or specified as INHERIT, then the option
inherits the value specified by the APPLDAT configuration option.
Alternatively, when LAPPLD is specified as YES or NO, then the option
overrides the value specified by the APPLDAT configuration option. When
the value of LAPPLD=NO is specified or it inherits the APPLDAT=NO
specification, then no application data is automatically registered for the
listener being defined. When LAPPLD=YES or it inherits the
APPLDAT=YES specification then application data is automatically
registered against a socket when the following socket commands are
successfully invoked:

* Before LISTEN or listen()
* Before GIVESOCKET for the IBM listener
» After TAKESOCKET or takesocket()

Chapter 2. Setting up and configuring CICS TCP/IP 61

» After CONNECT or connect()

The IBM listener's optional security exit can override this setting for each
accepted connection that is to be given to a child server. Overriding the
setting enables application data that is specific to the child server to be
registered against the accepted connections to be given. For more
information about programming applications, see [Chapter 6, “Writing]
applications that use the IP CICS sockets API,” on page 129] and
Application datain [z/OS Communications Server: IP Programmer's Guide
and Reference] For more information about programming applications, see
Application data in [z/OS Communications Server: IP Programmer's Guide|
land Reference} The associated application data is made available on the
Netstat ALL/-A, ALLConn/-a and COnn/-c reports, in the SMF 119 TCP
connection termination records and through the network management
interface (NMI) on the GetTCPListeners and GetConnectionDetail poll
requests. The Netstat and NMI interfaces support new filters for selecting
sockets based on wildcard comparisons of the application data. This
support can assist in locating application sockets during problem
determination and can aid capacity planning and accounting applications
to correlate TCP/IP SMF resource records with other applications records.
It is the responsibility of the using applications to record the content,
format, and meaning of the associated data.

Result: Listener configurations defined before VIR is set to the value NO.

MINMSGL
This parameter is specific to the standard version of the listener. The
minimum length of the Transaction Initial Message from the client to the
listener. The default value is 4. The listener continues to read on the
connection until this length of data has been received. FASTRD handles
blocking.

MSGFORM
This parameter is specific to the enhanced version of the listener and
indicates whether an error message returned to the client should be in
ASCII or EBCDIC. ASCII is the default. MSGFORM is displayed as
MSGFORMat on the EZAC screens.

MSGLEN
This parameter is specific to the enhanced version of the listener and
specifies the length of the data to be received from the client. The valid
range is 0 to 999. If the value is 0, the listener does not read in any data
from the client.

NUMSOCK
The number of sockets supported by this listener. One socket is the
listening socket. The others are used to pass connections to the servers
using the GIVESOCKET call; thus, one less than this number is the
maximum number of concurrent GIVESOCKET requests that can be active.
The default value is 50. The minimum value is 50.

The number of CICS transactions must be less than what is specified on
the MAXFILEPROC parameter on the BPXPRMxx parmlib member. For
more detail on setting the MAXFILEPROC parameter, see
[System Services Planning|

PEEKDAT
This parameter is specific to the enhanced version of the listener and
applies only if MSGLEN is not 0. A value of NO indicates that the listener

62 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

PORT

performs a normal read of the client data. The child server application
accesses this data in the data area-2 portion of the transaction input
message (TIM). A value of YES indicates that the listener reads the data
using the peek option; the data remains queued in TCP/IP and the child
server applications actually read it in rather than accessing it through the
TIM.

The port number this listener uses for accepting connections. This
parameter is mandatory. The ports can be shared. See |z/ O§
[Communications Server: IP Configuration Reference| for more information
about port sharing.

REATIME

The time in seconds this listener waits for a response to a RECV request. If
this time expires, the listener assumes that the client has failed and
terminates the connection by closing the socket. If this parameter is not
specified, checking for read timeout is not performed.

Result: If REATIME=0 is specified when either the MINMSGL byte value
or the MSGLEN byte value is greater than 0, then the listener will wait
indefinitely for that number of bytes to arrive before starting a child server
task.

RTYTIME

This optional configuration option specifies the length of time, in seconds,
that the listener waits after a TCP/IP stack outage occurs before it attempts
to connect or reconnect. The value 0 specifies that the listener cleans up
any resources and then the listener ends. A value greater than 0 and less
than 15 results in a RTYTIME value of 15 seconds; the listener task is
delayed 15 seconds before it attempts to connect or reconnect. The stack
that it tries to connect to is the stack specified by the listener's IP CICS
socket interface TCPADDR configuration option. If the connection fails,
then the listener task is delayed for the length of time specified by the
RTYTIME parameter. After this interval lapses, the listener attempts to
connect to its stack. The listener continues to attempt to connect to the
stack until either it succeeds or is terminated by the operator. Valid values
are in the range 0 - 999. The default setting is 15 seconds. shows a
summary of the listener's action based on the combination of the RTYTIME
value and the state of the listener's TCP stack.

Table 6. Listener's action based on RTYTIME and stack state

Listener RTYTIME TCP down TCP up

Initially started 0 Listener ends Listener initializes
>0 Listener waits

Previously active 0 Listener ends
>0 Listener waits

SECEXIT

The name of the user written security exit used by this listener. The default
is no security exit. The listener uses the EXEC CICS LINK command to
give control to the security exit. If OTE=YES then it should be expected
that the security exit program is defined to CICS as threadsafe, implying it
is coded to threadsafe standards. A flag which indicates that the IP CICS
socket interface is using CICS's Open Transaction Environment is passed to
the security exit. This flag enables the security exit to decide which child
server transaction to use and if it should possibly limit its use of

Chapter 2. Setting up and configuring CICS TCP/IP 63

non-threadsafe resources or commands. See [“Writing your own security or]
[transaction link modules for the listener” on page 152|for a thorough
discussion on the data passed to the exit. See [“Threadsafe considerations|
[for TP CICS sockets applications” on page 156| for more information about
coding threadsafe programs. A check is made to ensure the specified
security exit program is defined to CICS and enabled for use when the
listener is started by the EZAO Operator transaction.

TRANID
The transaction name for this listener. The default is CSKL.

TRANTRN
This parameter is specific to the standard version of the listener. Specify
YES or NO. YES indicates that the translation of the user data is based on
the character format of the transaction code. That is, with YES specified for
TRANTRN, the user data is translated if and only if TRANUSR is YES and
the transaction code is not uppercase EBCDIC. If NO specified for
TRANTRN, the user data is translated if and only if TRANUSR is YES. The
default value for TRANTRN is YES. See for more information.

Note: Regardless of how TRANTRN is specified, translation of the
transaction code occurs if and only if the first character is not uppercase
EBCDIC.

TRANUSR
This parameter is specific to the standard version of the listener. Specify
YES or NO. NO indicates that the user data from the Transaction Initial
Message should not be translated from ASCII to EBCDIC. YES indicates
that the user data can be translated depending on TRANTRN and whether
the transaction code is uppercase EBCDIC. The default value for
TRANUSR is YES. See for more information.

Note: Previous implementations functioned as if TRANTRN and
TRANUSR were both set to YES. Normally, data on the Internet is ASCII
and should be translated. The exceptions are data coming from an EBCDIC
client or binary data in the user fields. In those cases, you should set these
values accordingly. If you are operating in a mixed environment, use
multiple listeners on multiple ports.

shows how the listener handles translation with different
combinations of TRANTRN, TRANSUSR, and character format of the
transaction code.

Table 7. Conditions for translation of tranid and user data

Translate Translate user
TRANTRN TRANUSR Tranid format tranid? data?
YES YES EBCDIC NO NO
YES NO EBCDIC NO NO
NO YES EBCDIC NO YES
NO NO EBCDIC NO NO
YES YES ASCII YES YES
YES NO ASCII YES NO
NO YES ASCI YES YES
NO NO ASCII YES NO

64 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

USERID
The 8-character user ID under which the listener runs. If this parameter is
not specified, then the listener task obtains the user ID from either the
CICS PLT user ID (if the listener is started by way of the CICS PLT) or the
ID of the user that invoked the EZAO transaction (if the listener is started
using the EZAOQ transaction). If this parameter is specified, then any user
that starts the listener (the PLT user if the listener is started using the PLT)
must have surrogate security access to this user ID. This user ID has to be
permitted to any resources the listener accesses such as child server
transactions and programs. See the [z/0OS Security Server RACF Security]|
[Administrator's Guide] for details.

The value specified for the user ID's FILEPROCMAX parameter should be
configured appropriately. If the number of sockets that the listener creates
exceeds FILEPROCMAX value on the listener's user ID, then the listener
stops accepting new sockets until the number of active sockets is equal to
or less than the FILEPROCMAX value. For more information about the
FILEPROCMAX specification, see the documentation provided for the SAF

product in use on your system. If you are using RACEF see [z/OS Security

[Server RACF Security Administrator's Guidel.

JCL for the configuration macro

The configuration macro is used as part of a job stream to create and initialize the
configuration file. The job stream consists of IDCAMS steps to create the file, the
assembly of the initialization module generated by the configuration macro, linking
of the initialization module, and execution of the initialization module that
initializes the file.

The following sample in the SEZAINST data set illustrates a job stream that is
used to define a configuration file.

Chapter 2. Setting up and configuring CICS TCP/IP 65

Figure 41. CICSVSAM JCL to define a configuration file

//CONFIG JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1) ,MSGCLASS=A,CLASS=A

//*

//* z/0S Communications Server

//* SMP/E distribution name: EZACIVSM

/1%

//* Licensed Materials - Property of IBM

//* "Restricted Materials of IBM"

//* 5694-A01

//* Copyright IBM Corp. 2000,2009

/1

//* Status = CSVIRI1

/1

//* Function: This job defines and then loads the VSAM
//* file used for the CICS TCP configuration. The job stream
//* has the following steps:

/1%

//* 1. Delete a configuration file if one exists
//* 2. Define the VSAM configuration file to VSAM
//* 3. Assemble the initialization program

//* 4. Link the initialization program

//* 5. Execute the initialization program to load the
/1% VSAM configuration file

/1%

[/]* ====-= Delete old copy of file if any.

/1%

//DEL EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=+
//SYSIN DD *

DELETE -
CICS.TCP.CONFIG -
PURGE -
ERASE
/1
/1% --=--- Define the new file
/1%

//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSQUT=+
//SYSIN DD *
DEFINE CLUSTER (NAME(CICS.TCP.CONFIG) VOLUMES(CICSVOL) -
CYL(1 1) -
RECORDSIZE (150 150) FREESPACE(O 15) -
INDEXED) -
DATA (-
NAME (CICS.TCP.CONFIG.DATA) -
KEYS (16 0)) -
INDEX (-
NAME (CICS.TCP.CONFIG.INDEX))

/*

/1%

[/* ====-= Assemble the initialization program

/1%

//ASM EXEC PGM=ASMA90,PARM="'0BJECT,TERM',REGION=1024K
//SYSLIB DD DISP=SHR,DSNAME=SYS1.MACLIB

// DD DISP=SHR,DSNAME=TCPIP.SEZACMAC

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (5,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (2,1))

//SYSPUNCH DD DISP=SHR,DSNAME=NULLFILE

//SYSLIN DD DSNAME=&&0BJSET,DISP=(MOD,PASS) ,UNIT=SYSDA,
// SPACE=(400, (500,50)),

// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=+

//SYSIN DD *

EZACICD TYPE=INITIAL, Initialize generation environment
PRGNAME=EZACICDF, Name of the generated program
FILNAME=EZACONFG DD name of the configuration file

EZACICD TYPE=CICS, Generate configuration record
APPLID=CICSO1, APPLID of CICS
TCPADDR=TCPIP, Address space name for TCP/IP

NTASKS=20, Number of reusable MVS subtasks
DPRTY=10, Priority difference (CICS-Subtask)
CACHMIN=10, Minimum refresh time for CACHE

66 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

>

>X XX X X X X

CACHMAX=20, Maximum refresh time for CACHE X

CACHRES=5, Maximum number of active resolvers X
ERRORTD=CSKN Name of TD queue for error messages

EZACICD TYPE=LISTENER, Create Listener Record X
FORMAT=STANDARD, Standard Listener X
APPLID=CICSO1, APPLID of CICS X
TRANID=CSKL, Use standard transaction ID X
PORT=3010, Use port number 3010 X
AF=INET, Listener Address Family X
IMMED=YES, Listener starts up at initialization?X
BACKLOG=40, Set backlog value to 40 X
NUMSOCK=50, # of sockets supported by Listener X
MINMSGL=4, Minimum input message Tength X
ACCTIME=30, Set timeout value to 30 seconds X
GIVTIME=10, Set givesocket timeout to 10 seconds X
REATIME=300, Set read timeout to 5 minutes X
RTYTIME=10, Wait 10 seconds for TCP to come back X
LAPPLD=YES, Register Application Data X
TRANTRN=YES, Is TRANUSR=YES conditional? X
TRANUSR=YES, Translate user data? X
SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=ENHANCED, Enhanced listener X
APPLID=CICSO1, Applid of CICS region X
TRANID=CSKM, Transaction name for Tistener X
PORT=3011, Port number for listener X
AF=INET, Listener Address Family X
IMMED=YES, Listener starts up at initialization?X
BACKLOG=20, Backlog value for listener X
NUMSOCK=50, # of sockets supported by Tistener X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
RTYTIME=20, Wait 20 seconds for TCP to come back X
LAPPLD=INHERIT, Inherit interface setting X
CSTRAN=TRN1, Name of child IPv4 server transactionX
CSSTTYP=KC, Child server startup type X
CSDELAY=000000, Child server delay interval X
MSGLEN=0, Length of input message X
PEEKDAT=NO, Peek option X
MSGFORM=ASCII, Output message format X
SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=STANDARD, Standard Tistener X
APPLID=CICSO1, Applid of CICS region X
TRANID=CS6L, Transaction name for Tistener X
PORT=3012, Port number for listener X
AF=INET6, Listener Address Family X
IMMED=YES, Listener starts up at initialization?X
BACKL0G=20, Backlog value for listener X
NUMSOCK=50, # of sockets supported by Tistener X
MINMSGL=4, Minimum input message Tength X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
RTYTIME=0, Listener will end when TCP ends X
LAPPLD=NO, No Application Data X
TRANTRN=YES, Is TRANUSR=YES conditional? X
TRANUSR=YES, Translate user data? X
SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=ENHANCED, Enhanced Tistener X
APPLID=CICSO1, Applid of CICS region X
TRANID=CS6M, Transaction name for Tistener X
PORT=3013, Port number for Tistener X
AF=INET6, Listener Address Family X
IMMED=YES, Listener starts up at initialization?X
BACKL0G=20, Backlog value for listener X
NUMSOCK=50, # of sockets supported by Tistener X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
RTYTIME=0, Listener will end when TCP ends X
LAPPLD=INHERIT, Inherit interface setting X
CSTRAN=TRNG, Name of child IPv6 server transactionX
CSSTTYP=KC, Child server startup type X
CSDELAY=000000, Child server delay interval X
MSGLEN=0, Length of input message X
PEEKDAT=NO, Peek option X

Chapter 2. Setting up and configuring CICS TCP/IP 67

>

MSGFORM=ASCII, Output message format
USERID=USER00O1, Listener User ID X
SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=FINAL

/*

/1%

J/% —eeeee
/]*

//LINK

//
//SYSPRINT
//SYSUT1
//SYSLMOD
//

//
//SYSLIN
/%

YL T——
/1%
//FILELOAD
//
//EZACONFG
/1%

Link the initialization program

EXEC PGM=IEWL,PARM="'LIST,MAP,XREF',
REGION=512K,COND=(4,LT,ASM)

DD SYSOUT=+

DD SPACE=(CYL, (5,1)),DISP=(NEW,PASS),UNIT=SYSDA

DD DSNAME=8&LOADSET (EZACICDF),DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(TRK, (1,1,1)),
DCB= (DSORG=PO,RECFM=U, BLKSIZE=32760)

DD DSNAME=&&0BJSET,DISP=(OLD,DELETE)

Execute the initialization program
EXEC PGM=+,LINK.SYSLMOD,

COND=((4,LT,DEFINE), (4,LT,ASM), (4,LT,LINK))
DD DSNAME=CICS.TCP.CONFIG,DISP=0LD

Customizing the configuration transaction (EZAC)

There is a CICS object for each CICS that uses the TCP/IP socket interface and is
controlled by the configuration file. The CICS object is identified by the APPLID of
the CICS it references.

There is a listener object for each listener defined for a CICS. It is possible that a
CICS does not have a listener, but this is not common practice. A CICS can have
multiple listeners that are either multiple instances of the supplied listener with
different specifications, multiple user-written listeners, or some combination.

The EZAC transaction is a panel-driven interface that lets you add, delete, or
modify the configuration file. |Table 8| lists and describes the functions supported by
the EZAC transaction.

Modifying data sets: You can use the EZAC transaction to modify the
configuration data set while CICS is running.

Table 8. Functions supported by the EZAC transaction

Command Object Function

ALTER CICS/listener Modifies the attributes of an existing
resource definition

CONVERT Listener Converts listener from the standard listener
that requires the standard header to the
enhanced listener that does not require the
header.

cory CICS/listener * CICS - Copies the CICS object and its
associated listeners to create another
CICS object. COPY fails if the new CICS
object already exists.

* Listener - Copies the listener object to
create another listener object. COPY fails
if the new listener object already exists.

DEFINE CICS/listener Creates a new resource definition

DELETE CICS/listener + CICS - Deletes the CICS object and all of
its associated listeners.

* Listener - Deletes the listener object.

68 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 8. Functions supported by the EZAC transaction (continued)

Command Object Function

DISPLAY CICS/listener Shows the parameters specified for the
CICS/listener object.

RENAME CICS/listener Performs a COPY followed by a DELETE of
the original object.

If you enter EZAC, the following screen is displayed:

EZAC,
Enter One of the Following

ALTer
CONvert
COPy
DEFine
DELete
DISplay
REName

PF 3 END
-

APPLID =

12 CNCL

Figure 42. EZAC initial screen

ALTER function for EZAC
The ALTER function is used to change CICS objects or their listener objects. If you

specify ALter on the EZAC Initial Screen or enter EZAC,ALT on a blank screen, the
following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 69

Ve
EZAC,ALTer, APPLID =
Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL
.

Figure 43. EZAC,ALTER screen

Note: You can skip this screen by entering either EZAC,ALTER,CICS or
EZAC,ALTER,LISTENER.

ALTER,CICS:
For alteration of a CICS object, the following screen is displayed:

70 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Ve
EZAC,ALTer,CICS

Enter all fields

APPLID

PF 3 END
.

AAALD) 8 co00000c

APPLID of CICS System

12 CNCL

Figure 44. EZAC,ALTER,CICS screen

After the APPLID is entered, the following screen is displayed:

EZAC,ALTer,CICS

Overtype to Enter

Press ENTER or PF3 to exit

PF 3 END

AAALD) 8 cooo0c0c

APPLID ===> ..., APPLID of CICS System

TCPADDR ===> _....... Name of TCP Address Space
NTASKS ==> ., Number of Reusable Tasks

DPRTY ===> _,, DPRTY Value for ATTACH

CACHMIN ===> Minimum Refresh Time for Cache
CACHMAX ==> ,,, Maximum Refresh Time for Cache
CACHRES ===> . Maximum Number of Resolvers
ERRORTD ===> ... TD Queue for Error Messages
SMSGSUP ===> ., Suppress Task Started Messages
TERMLIM ===> ., Subtask Termination Limit
TRACE ===> _,, Trace CICS Sockets

0TE ===> Open Transaction Environment
TCBLIM =8 56000 Number of open API TCBs

PLTSDI ===> CICS PLT Shutdown Immediate
APPLDAT ===> Register Application Data

12 CNCL

Figure 45. EZAC,ALTER,CICS detail screen

The system requests a confirmation of the values displayed. After the changes are
confirmed, the changed values are in effect for the next initialization of the CICS

sockets interface.

ALTER,LISTENER:
For alteration of a listener, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 71

Ve
EZAC,ALTer,LISTENER AAALID) 8 co000000

Enter all fields

APPLID ===> ..., APPLID of CICS System

TRANID ===> ... Transaction Name of Tistener

PF 3 END 12 CNCL
o

Figure 46. EZAC,ALTER,LISTENER screen

If you are altering a standard listener, the first screen shows the attributes of the
standard listener:

e
EZAC,ALTer,LISTENER (standard Tistener. screen 1 of 2) APPLID =

Overtype to Enter

APPLID ===> ..., APPLID of CICS System
TRANID ===> ... Transaction Name of Tistener
PORT ===> ,.... Port Number of Tistener

AF Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No

BACKLOG Backlog Value for Tistener
NUMSOCK Number of Sockets in Tistener
ACCTIME Timeout Value for ACCEPT
GIVTIME Timeout Value for GIVESOCKET
REATIME = Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2
or ENTER if finished making changes

PF 3 END 8 NEXT 12 CNCL

Figure 47. EZAC,ALTER,LISTENER detail screen 1- Standard listener

Pressing PF8 displays the screen used to manage the unique attributes of the
standard listener

72 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZAC,ALTer,LISTENER (standard Tistener. screen 2 of 2) APPLID =

Overtype to Enter

MINMSGL ===> ., Minimum Message Length
TRANTRN ===> ., Translate TRNID Yes |No
TRANUSR ===> ., Translate User Data Yes|No
SECEXIT ===> Name of Security Exit
GETTID === ., Get TTLS ID (YES|NO)
USERID ==> ..., Listeners User ID

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

Figure 48. EZAC,ALTER,LISTENER detail screen 2: Standard listener

Pressing PF7 displays the screen used to manage the common attributes of the
standard listener.

If altering an enhanced listener, then the first screen shows the attributes of the
enhanced listener.

EZAC,ALTer,LISTENER (enhanced Tistener. screen 1 of 2) APPLID =

Overtype to Enter

APPLID ===> _....... APPLID of CICS System
TRANID ===> ... Transaction Name of Tistener
PORT ===> _,... Port Number of Tistener

AF ===> ... Listener Address Family
IMMEDIATE ~ ===> ... Immediate Startup Yes|No
BACKLOG ===> . Backlog Value for Tlistener
NUMSOCK ===> ., Number of Sockets in Tistener
ACCTIME ===> . Timeout Value for ACCEPT
GIVTIME ===> . Timeout Value for GIVESOCKET
REATIME ===> ,,, Timeout Value for READ
RTYTIME ===> . Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2

\PF 3 END 8 NEXT 12 CNCL

Figure 49. EZAC,ALTER,LISTENER detail screen 1- Enhanced listener

Pressing PF8 displays the screen used to manage the unique attributes of the
enhanced listener.

Chapter 2. Setting up and configuring CICS TCP/IP

EZAC,ALTer,LISTENER (enhanced Tistener. screen 2 of 2) APPLID =

Overtype to Enter

CSTRAN ===> Child Server Transaction Name
CSSTTYP ===> _. Startup Method (KC|IC|TD)
CSDELAY ===> _..... Delay Interval (hhmmss)
MSGLENgth ===> | Message Length (0-999)
PEEKDATa ===> ., Enter Y|N

MSGFORMat ~ ===> Enter ASCII|EBCDIC

USEREXIT ===> ... Name of User/Security exit
GETTID ===> ,,, Get TTLS ID (YES|N0)

USERID ===> ..., Listeners User ID

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

\PF 3 END 7 PREV 12 CNCL

Figure 50. EZAC,ALTER,LISTENER detail screen 2: Enhanced listener

Pressing PF7 displays the screen used to manage the common attributes of the
enhanced listener.

The system requests a confirmation of the values displayed. After the changes are
confirmed, the changed values is in effect for the next initialization of the CICS
sockets interface.

CONVERT function for EZAC

The CONVERT function is used to convert between standard and enhanced
versions of the listener. If you specify CONvert on the EZAC Initial Screen or enter
EZAC,CON on a blank screen, the following screen is displayed:

74 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

4 N
EZAC,CONvert,LISTENER APPLID =
Enter all fields
APPLID ===> ..., APPLID of CICS System
TRANID ===> ... Transaction Name of Tistener
Format ===> STANDARD Enter STANDARD|ENHANCED
PF 3 END 12 CNCL

Figure 51. EZAC,CONVERT,LISTENER screen

After the names and format type are entered, one of the following screens is
displayed. The first screen is displayed for the standard version.

If converting to a standard listener, then the first screen shows the attributes of the
standard listener.

Chapter 2. Setting up and configuring CICS TCP/IP 75

EZAC,CONvert,LISTENER (standard Tistener. screen 1 of 2) APPLID =

Overtype to Enter

APPLID Sk APPLID of CICS System

TRANID ===> ... Transaction Name of Tistener
PORT = Port Number of Tistener

AF Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG Backlog Value for Tistener
NUMSOCK ===> .. Number of Sockets in Tistener
ACCTIME Timeout Value for ACCEPT
GIVTIME vee Timeout Value for GIVESOCKET
REATIME ===> . Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL
.

Figure 52. EZAC,CONVERT,LISTENER detail screen 1- Standard listener

Pressing PF8 displays the screen used to manage the unique attributes of the
standard listener.

s
EZAC,CONvert,LISTENER (standard Tistener. screen 2 of 2) APPLID =

Overtype to Enter

MINMSGL Minimum Message Length
TRANTRN Translate TRNID Yes|No
TRANUSR = Translate User Data Yes|No
SECEXIT ===> Name of Security Exit
GETTID ===> ., Get TTLS ID (YES|NO)
USERID ===> ... Listeners User ID

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL
-

Figure 53. EZAC,CONVERT,LISTENER detail screen 2: Standard listener

Pressing PF7 displays the screen used to manage the common attributes of the
standard listener.

If converting to an enhanced listener, the first screen shows the attributes of the
enhanced listener.

76 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZAC,CONvert,LISTENER (enhanced Tistener. screen 1 of 2) APPLID =

Overtype to Enter

APPLID SEE> L iieees APPLID of CICS System
TRANID ===> .., Transaction Name of Tistener
PORT ===> ,.... Port Number of Tistener

AF ===> ,,... Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ., Backlog Value for Tistener
NUMSOCK ===> _,, Number of Sockets in Tistener
ACCTIME ===> ., Timeout Value for ACCEPT
GIVTIME ===> . Timeout Value for GIVESOCKET
REATIME ===> . Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2

\PF 3 END 8 NEXT 12 CNCL

Figure 54. EZAC,CONVERT,LISTENER detail screen 1- Enhanced listener

Pressing PF8 displays the screen used to manage the unique attributes of the
enhanced listener

EZAC,CONvert,LISTENER (enhanced Tistener. screen 2 of 2) APPLID =

Overtype to Enter

CSTRAN ==> ... Child Server Transaction Name
CSSTTYP ===> | Startup Method (KC|IC|TD)
CSDELAY ===> _..... Delay Interval (hhmmss)
MSGLENgth ===> Message Length (0-999)
PEEKDATa == ,,, Enter Y|N

MSGFORMat — ===> Enter ASCII|EBCDIC

USEREXIT ===> _,...... Name of User/Security exit
GETTID ===> ,,. Get TTLS ID (YES|N0)

USERID ===> ,....... Listeners User ID

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

\PF 3 END 7 PREV 12 CNCL

Figure 55. EZAC,CONVERT,LISTENER detail screen 2: Enhanced listener

Pressing PF7 displays the screen used to manage the common attributes of the
enhanced listener.

The system requests a confirmation of the values displayed. After the changes are

confirmed, the changed values are in effect for the next initialization of the CICS
sockets interface.

Chapter 2. Setting up and configuring CICS TCP/IP 77

COPY function for EZAC

The COPY function is used to copy an object into a new object. If you specify
COPy on the EZAC Initial Screen or enter EZAC,COP on a blank screen, the
following screen is displayed:

e
EZAC,COPy, APPLID =
Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Figure 56. EZAC,COPY screen

Note: You can skip this screen by entering either EZAC,COPY,CICS or
EZAC,COPY,LISTENER.

COPY,CICS:
If you specify CICS on the previous screen, the following screen is displayed:

78 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

4 N
EZAC,COPy,CICS APPLID =
Enter all fields
SCICS ===> ,....... APPLID of Source CICS
TCICS ==> ,....... APPLID of Target CICS
PF 3 END 12 CNCL

Figure 57. EZAC,COPY,CICS screen

After the APPLIDs of the source CICS object and the target CICS object are
entered, confirmation is requested. When confirmation is entered, the copy is
performed.

COPY,LISTENER:
If you specify COPY,LISTENER, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 79

4 N
EZAC,COPy,LISTENER APPLID =
Enter all fields
SCICS ===> ..., APPLID of Source CICS
SLISTENER ===> ... Name of Source listener
TCICS ===> _....... APPLID of Target CICS
TLISTENER ===> ... Name of Target listener
PF 3 END 12 CNCL
o J

Figure 58. EZAC,COPY,LISTENER screen

After the APPLIDs of the source and target CICS objects and the names of the
source and target listeners are entered, confirmation is requested. When the
confirmation is entered, the copy is performed.

DEFINE function for EZAC

The DEFINE function is used to create CICS objects and their listener objects. If
you specify DEFine on the EZAC Initial Screen or enter EZAC,DEF on a blank
screen, the following screen is displayed:

80 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

: .
EZAC,DEFine, APPLID =
Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Figure 59. EZAC,DEFINE screen

Note: You can skip this screen by entering either EZAC,DEFINE,CICS or
EZAC,DEFINE,LISTENER.

DEFINE,CICS:
For definition of a CICS object, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 81

Ve
EZAC,DEFine,CICS AAALID) 8 co000000

Enter all fields

APPLID ===> ..., APPLID of CICS System

PF 3 END 12 CNCL
.

Figure 60. EZAC,DEFINE,CICS screen

After the APPLID is entered, the following screen is displayed.

/'EZAC,DEFine,CICS APPLID =
Overtype to Enter
APPLID ===> APPLID of CICS System
TCPADDR Name of TCP Address Space
NTASKS Number of Reusable Tasks
DPRTY DPRTY Value for ATTACH
CACHMIN Minimum Refresh Time for Cache
CACHMAX Maximum Refresh Time for Cache
CACHRES Maximum Number of Resolvers
ERRORTD TD Queue for Error Messages
SMSGSUP Suppress Task Started Messages
TERMLIM Subtask Termination Limit
TRACE ===> .. Trace CICS Sockets
0TE = Open Transaction Environment
TCBLIM ===> ... Number of open API TCBs
PLTSDI ===> .. CICS PLT Shutdown Immediate
APPLDAT =B 550 Register Application Data
Press ENTER or PF3 to exit
PF 3 END 12 CNCL

Figure 61. EZAC,DEFINE,CICS detail screen

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

DEFINE,LISTENER:
For definition of a listener, the following screen is displayed:

82 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

4] N
EZAC,DEFine,LISTENER APPLID =
Enter all fields
APPLID ===> ..., APPLID of CICS System
TRANID ==> ... Transaction Name of Tistener
Format =L 56000000 Enter STANDARD|ENHANCED
PF 3 END 12 CNCL
- J

Figure 62. EZAC,DEFINE,LISTENER screen

If defining a standard listener, the first screen shows the attributes of the standard

listener.

4]] N
EZAC,DEFine,LISTENER (standard Tistener. screen 1 of 2) APPLID =
Overtype to Enter
APPLID ===> ..., APPLID of CICS System
TRANID ===> ... Transaction Name of Tistener
PORT ===> ,.,... Port Number of Tistener
AF ===> ... Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ., Backlog Value for Tistener
NUMSOCK ===> ., Number of Sockets in Tistener
ACCTIME ===> ., Timeout Value for ACCEPT
GIVTIME ===> . Timeout Value for GIVESOCKET
REATIME ===> . Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL

Figure 63. EZAC,DEFINE,LISTENER detail screen 1- Standard listener

Pressing PF8 displays the screen used to manage the unique attributes of the
standard listener.

Chapter 2. Setting up and configuring CICS TCP/IP 83

EZAC,DEFine,LISTENER (standard Tistener. screen 2 of 2) APPLID =

Overtype to Enter

MINMSGL
TRANTRN
TRANUSR
SECEXIT
GETTID
USERID

Minimum Message Length
Translate TRNID Yes|No
Translate User Data Yes|No
........ Name of Security Exit
Get TTLS ID (YES|NO)
Listeners User ID

Verify parameters, press PF7 to go back to screen 1

PF 3 END

or ENTER if finished making changes

7 PREV 12 CNCL

Figure 64. EZAC,DEFINE,LISTENER detail screen 2: Standard listener

84

Pressing PF7 displays the screen used to manage the common attributes of the
standard listener.

If defining an enhanced listener, the first screen shows the attributes of the
enhanced listener.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZAC,DEFine,LISTENER (enhanced Tistener. screen 1 of 2) APPLID =

Overtype to Enter

APPLID SEE> L iieees APPLID of CICS System
TRANID ===> .., Transaction Name of Tistener
PORT ===> ,.... Port Number of Tistener

AF ===> ,,... Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ., Backlog Value for Tistener
NUMSOCK ===> _,, Number of Sockets in Tistener
ACCTIME ===> ., Timeout Value for ACCEPT
GIVTIME ===> . Timeout Value for GIVESOCKET
REATIME ===> . Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL
o %
Figure 65. EZAC,DEFINE,LISTENER detail screen 1- Enhanced listener

Pressing PF8 displays the screen used to manage the unique attributes of the
enhanced listener

4 . . N\

EZAC,DEFine,LISTENER (enhanced Tistener. screen 2 of 2) APPLID =

Overtype to Enter

CSTRAN ===> ... Child Server Transaction Name

CSSTTYP ===> | Startup Method (KC|IC|TD)

CSDELAY ===> _..... Delay Interval (hhmmss)

MSGLENgth ===> Message Length (0-999)

PEEKDATa == ,,, Enter Y|N

MSGFORMat — ===> Enter ASCII|EBCDIC

USEREXIT ===> _,...... Name of User/Security exit

GETTID ===> ,,, Get TTLS ID (YES|N0)

USERID ===> ..., Listeners User ID

Verify parameters, press PF7 to go back to screen 1

or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

o %

Figure 66. EZAC,DEFINE,LISTENER detail screen 2: Enhanced listener

Pressing PF7 displays the screen used to manage the common attributes of the
enhanced listener.

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

Chapter 2. Setting up and configuring CICS TCP/IP 85

DELETE function for EZAC

The DELETE function is used to delete a CICS object or a listener object. Deleting a
CICS object deletes all listener objects within that CICS object. If you specify
DELete on the EZAC initial screen or enter EZAC,DEL on a blank screen, the

following screen is displayed:

4 N
EZAC,DELete, APPLID =
Enter One of the Following
CICS
LISTENER
PF 3 END 12 CNCL
o J

Figure 67. EZAC,DELETE screen

DELETE,CICS:
If you specify DELETE,CICS, the following screen is displayed:

86 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

4 N
EZAC,DELete,CICS APPLID =
Enter all fields
APPLID ===> ..., APPLID of CICS System
PF 3 END 12 CNCL
- J

Figure 68. EZAC,DELETE,CICS screen

After the APPLID is entered, confirmation is requested. When the confirmation is
entered, the CICS object is deleted.

DELETE,LISTENER:
If you specify DELETE,LISTENER, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 87

Ve
EZAC,DELete,LISTENER APPLID =
Enter all fields
APPLID ===> ..., APPLID of CICS System
TRANID ===> ... Transaction Name of Tistener
PF 3 END 12 CNCL

o

Figure 69. EZAC,DELETE,LISTENER screen

After the APPLID and listener name are entered, confirmation is requested. When
confirmation is entered, the listener object is deleted

DISPLAY function for EZAC

The DISPLAY function is used to display the specification of an object. If you
specify DISplay on the initial EZAC screen or enter EZAC,DIS on a blank screen,
the following screen is displayed:

88 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Vs
EZAC,DISplay, APPLID =
Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Figure 70. EZAC,DISPLAY screen

Note: You can skip this screen by entering either EZAC,DISPLAY,CICS or
EZAC,DISPLAY,LISTENER.

DISPLAY,CICS:
If you specify DISPLAY,CICS, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 89

Enter all fields

APPLID ===> ..., APPLID of CICS System

PF 3 END 12 CNCL
.

-
EZAC,DISplay,CICS AAALID) 8 co000000

Figure 71. EZAC,DISPLAY,CICS screen

After the APPLID is entered, the following screen is displayed:

/EZAC,DISp1ay,CICS APPLID =
APPLID ===> ..., APPLID of CICS System
TCPADDR Name of TCP Address Space
NTASKS Number of Reusable Tasks
DPRTY DPRTY Value for ATTACH
CACHMIN Minimum Refresh Time for Cache
CACHMAX Maximum Refresh Time for Cache
CACHRES Maximum Number of Resolvers
ERRORTD TD Queue for Error Messages
SMSGSUP Suppress Task Started Messages
TERMLIM Subtask Termination Limit
TRACE ===> .. Trace CICS Sockets
0TE = Open Transaction Environment
TCBLIM ===> ... Number of open API TCBs
PLTSDI ===> . CICS PLT Shutdown Immediate
APPLDAT =B 550 Register Application Data
Press ENTER or PF3 to exit
PF 3 END 12 CNCL

Figure 72. EZAC,DISPLAY,CICS detail screen

DISPLAY,LISTENER:

If you specify DISPLAY,LISTENER, the following screen is displayed:

90 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Ve
EZAC,DISplay,LISTENER AAALD) 8 co00000c

Enter all fields

APPLID ===> ..., APPLID of CICS System
TRANID ==> ... Transaction Name of Tistener
PF 3 END 12 CNCL
- J
Figure 73. EZAC,DISPLAY,LISTENER screen
If displaying a standard listener, the first screen shows the attributes of the
standard listener.
4 . N\
EZAC,DISplay,LISTENER (standard Tistener. screen 1 of 2) APPLID =
APPLID ===> ..., APPLID of CICS System
TRANID ===> ... Transaction Name of Tistener
PORT ===> ,.,... Port Number of Tistener
AF ===> ... Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ., Backlog Value for Tistener
NUMSOCK ===> ., Number of Sockets in Tistener
ACCTIME ===> ., Timeout Value for ACCEPT
GIVTIME ===> ., Timeout Value for GIVESOCKET
REATIME ===> . Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data
Verify parameters, press PF8 to go to screen 2
PF 3 END 8 NEXT 12 CNCL
J
Figure 74. EZAC,DISPLAY,LISTENER detail screen 1- Standard listener
Pressing PF8 displays the screen used to manage the unique attributes of the
standard listener.
Chapter 2. Setting up and configuring CICS TCP/IP 91

EZAC,DISplay,LISTENER (standard Tistener. screen 2 of 2) APPLID =

MINMSGL
TRANTRN
TRANUSR
SECEXIT
GETTID
USERID

Minimum Message Length
Translate TRNID Yes|No
Translate User Data Yes|No
........ Name of Security Exit
Get TTLS ID (YES|NO)
Listeners User ID

Verify parameters, press PF7 to go back to screen 1
Press ENTER or PF3 to exit

PF 3 END

7 PREV 12 CNCL

Figure 75. EZAC,DISPLAY,LISTENER detail screen 2: Standard listener

92

Pressing PF7 displays the screen used to manage the common attributes of the
standard listener.

If displaying an enhanced listener, the first screen shows the attributes of the
enhanced listener.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Ve
EZAC,DISplay,LISTENER (enhanced Tistener. screen 1 of 2) APPLID =

APPLID SEE> L iieees APPLID of CICS System

TRANID ===> .., Transaction Name of Tistener
PORT ===> ... Port Number of Tistener

AF ===> ,,... Listener Address Family
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ., Backlog Value for Tistener
NUMSOCK ===> _,, Number of Sockets in Tistener
ACCTIME ===> ., Timeout Value for ACCEPT
GIVTIME ===> . Timeout Value for GIVESOCKET
REATIME ===> . Timeout Value for READ
RTYTIME ===> ., Stack Connection Retry Time
LAPPLD ===> ., Register Application Data

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL
NG J/
Figure 76. EZAC,DISPLAY,LISTENER detail screen 1- Enhanced listener
Pressing PF8 displays the screen used to manage the unique attributes of the
enhanced listener.
4 . N\
EZAC,DISplay,LISTENER (enhanced Tistener. screen 2 of 2) APPLID =
CSTRAN ===> ... Child Server Transaction Name
CSSTTYP ===> | Startup Method (KC|IC|TD)
CSDELAY ===> _..... Delay Interval (hhmmss)
MSGLENgth ===> Message Length (0-999)
PEEKDATa == ,,, Enter Y|N
MSGFORMat ~ ===> Enter ASCII|EBCDIC
USEREXIT ===> ,,...... Name of User/Security exit
GETTID ===> .. Get TTLS ID (YES|NO)
USERID ===> ..., Listeners User ID
Verify parameters, press PF7 to go back to screen 1
Press ENTER or PF3 to exit
PF 3 END 7 PREV 12 CNCL
- J

Figure 77. EZAC,DISPLAY,LISTENER detail screen 2: Enhanced listener

RENAME function for EZAC

The RENAME function is used to rename a CICS or listener object. It consists of a
COPY followed by a DELETE of the source object. For a CICS object, the object
and all of its associated listeners are renamed. For a listener object, only that
listener is renamed.

If you specify REName on the initial EZAC screen or enter EZAC,REN on a blank
screen, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 93

Ve
EZAC,REName, APPLID =
Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL
.

Figure 78. EZAC,RENAME screen

Note: You can skip this screen by entering either EZAC,RENAME,CICS or
EZAC,RENAME,LISTENER.

RENAME,CICS:
If you specify CICS on the previous screen, the following screen is displayed:

94 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

4 N
EZAC,REName,CICS APPLID =
Enter all fields
SCICS ===> ,....... APPLID of Source CICS
TCICS ==> ,....... APPLID of Target CICS
PF 3 END 12 CNCL

Figure 79. EZAC,RENAME,CICS screen

After the APPLIDs of the source CICS object and the target CICS object are
entered, confirmation is requested. When confirmation is entered, the rename is
performed.

RENAME,LISTENER:
If you specify RENAME,LISTENER, the following screen is displayed:

Chapter 2. Setting up and configuring CICS TCP/IP 95

4 ™\
EZAC,REName, LISTENER APPLID =
Enter all fields
SCICS ===> ..., APPLID of Source CICS
SLISTENER ===> ... Name of Source listener
TCICS ===> _....... APPLID of Target CICS
TLISTENER ===> _ .. Name of Target listener
PF 3 END 12 CNCL
o J

Figure 80. EZAC,RENAME,LISTENER screen

After the APPLIDs of the source and target CICS objects and the names of the
source and target listeners are entered, confirmation is requested. When the
confirmation is entered, the rename is performed.

z/OS UNIX System Services environment effects on IP CICS sockets

The UNIX System Services provides controls on the number of sockets that can be
opened concurrently by a single process (in a CICS region). You can use this to
limit the number of socket descriptors that a process can have, thereby limiting the
amount of CICS and system resources a single process can use at one time.

Two specifications affect this limit:

e The MAXFILEPROC parameter of the BPXPRMxx parmlib member, which
specifies a default limit for any process in the system

* FILEPROCMAX specification in the OMVS segment of the SAF profile for the
CICS region's userid, which overrides the default; NOFILEPROCMAX can also
be specified, which removes this limit

For more information about how MAXFILEPROC affects tuning applications, see
[z/OS UNIX System Services Planning| The z/OS configuration tool, called
Managed System Infrastructure (msys), contains additional information about the
impacts of the UNIX MAXFILEPROC parameter settings.

For more information about the FILEPROCMAX specification, see the
documentation provided for the SAF product in use on your system. If using
RACE, this can be found in the [z/OS Security Server RACF Security]
[Administrator's Guide]

CICS/TS V2R3 and later does a set_dub_default causing each CICS Sockets task to
run as its own OMVS process. Therefore, the MAXPROCSYS parameter must be
large enough to accomodate the largest possible number of CICS Sockets tasks plus
any other OMVS processes (CICS/TS itself always has at least 2 OMVS processes).

96 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 3. Configuring the CICS Domain Name Server cache

The Domain Name Server (DNS) is like a telephone book that contains a person's
name, address, and telephone number. The name server maps a host name to an IP
address, or an IP address to a host name. For each host, the name server can
contain IP addresses, nicknames, mailing information, and available well-known
services (for example, SMTP, FTP, or Telnet).

Translating host names into IP addresses is just one way of using the DNS. Other
types of information related to hosts can also be stored and queried. The different
possible types of information are defined through input data to the name server in
the resource records.

Although the CICS DNS cache function is optional, it is useful in a highly active
CICS client environment. It combines the GETHOSTBYNAME() call that is
supported in CICS sockets, and a cache that saves results from
GETHOSTBYNAMEY() for future reference. If your system receives repeated
requests for the same set of domain names, using the DNS can improve
performance significantly. If you have specified that IP CICS sockets should use the
Open Transaction Environment, and you link to the domain name service module,
EZACIC25, your threadsafe program is switched to the QR TCB.

Guideline: If the system resolver caching function is enabled, CICS DNS caching
should not be configured. Resolver caching (when enabled) provides a significant
performance improvement over the CICS DNS cache. For more information about
resolver caching, visit this website: Ihtt‘p:/ /www-01.ibm.com/software/htp/cics/ |

See|z/OS Communications Server: IP Configuration Reference| for information
about caching issues, and see [z/OS Communications Server: IP Configuration|
for more information about [system resolver caching}

Rules:

* DNS caching does not support the caching of IPv6 addresses because the
gethostbyname() function is not IPv6 enabled.

* Using the system resolver caching function provides the following benefits:

— After a host name is resolved, it is cached locally. Locally caching a host name
enables all other applications that run in the system to retrieve this
information without increasing the network communications.

— The system resolver caching function honors the time to live (TTL) value,
which indicates when the information for the resource record expires.

— The system resolver can cache IPv4 and IPv6 resources.

* DNS caching supports the caching of IPv4 addresses. You can use the system
resolver for both IPv4 and IPv6 name resolution. IPv6 clients use unique host
names and you must enable DNS entries to allow unique host names to exist in
different DNS zones. An IPv6 client gets an AAAA address to use when
connecting to an IPv6-enabled listener.

© Copyright IBM Corp. 2000, 2015 97

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

CICS DNS cache function components

98

The function consists of three parts.
* A VSAM file which is used for the cache.

Note: The CICS DATATABLE option can be used with the cache.
¢ A macro, EZACICR, which is used to initialize the cache file.

* A CICS application program, EZACIC25, which is invoked by the CICS
application in place of the GETHOSTBYNAME socket call.

VSAM cache file

The cache file is a VSAM KSDS (Key Sequenced Data Set) with a key of the host
name padded to the right with binary zeros. The cache records contain a
compressed version of the hostent structure returned by the name server plus a
time of last refresh field. When a record is retrieved, EZACIC25 determines if it is
usable based on the difference between the current time and the time of last
refresh.

EZACICR macro

The EZACICR macro builds an initialization module for the cache file, because the
cache file must start with at least one record to permit updates by the EZACIC25
module. To optimize performance, you can preload dummy records for the host
names which you expect to be used frequently. This results in a more compact file
and minimizes the I/O required to use the cache. If you do not specify at least one
dummy record, the macro builds a single record of binary zeros. See
[Create the initialization module” on page 100.

EZACIC25 module

This module is a normal CICS application program which is invoked by an EXEC
CICS LINK command. The COMMAREA passes information between the invoking
CICS program and the DNS Module. If domain name resolves successfully,
EZACIC25 obtains storage from CICS and builds a hostent structure in that
storage. When finished with the hostent structure, release this storage using the
EXEC CICS FREEMAIN command.

The EZACIC25 module uses four configuration parameters plus the information
passed by the invoking application to manage the cache. These configuration
parameters are as follows:

Error destination - ERRORTD
The Transient Data destination to which error messages are sent.

Minimum refresh time - CACHMIN
The minimum time in minutes between refreshes of a cache record. If a
cache record is younger than this time, it is used. This value is set to 15
minutes.

Maximum refresh time - CACHMAX
The maximum time in minutes between refreshes of a cache record. If a
cache record is older than this time, it is refreshed. This value is set to 30
minutes.

Maximum resolver requests - CACHRES
The maximum number of concurrent requests to the resolver. It is set at 10.
See [“How the DNS cache handles requests” on page 99,

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

If the transaction program is executing in the Open Transaction Environment,
expect a TCB switch to occur for each call to EZACIC25.

How the DNS cache handles requests

When a request is received where cache retrieval is specified, the following takes
place:

1.

Attempt to retrieve this entry from the cache. If unsuccessful, issue the
GETHOSTBYNAME call unless request specifies cache only.

If cache retrieval is successful, calculate the age of the record. This is the
difference between the current time and the time this record was created or
refreshed.

* If the age is not greater than minimum cache refresh, use the cache
information and build the Hostent structure for the requestor. Then return to
the requestor.

* If the age is greater than the maximum cache refresh, issue the
GETHOSTBYNAME call and refresh the cache record with the results.

* If the age is between the minimum and maximum cache refresh values, do
the following:

a. Calculate the difference between the maximum and minimum cache
refresh times and divide it by the maximum number of concurrent
resolver requests. The result is called the time increment.

b. Multiply the time increment by the number of currently active resolver
requests. Add this time to the minimum refresh time giving the adjusted
refresh time.

c. If the age of the record is less than the adjusted refresh time, use the
cache record.

d. If the age of the record is greater than the adjusted refresh time, issue the
GETHOSTBYNAME call and refresh the cache record with the results.

* If the GETHOSTBYNAME is issued and is successful, the cache is updated
and the update time for the entry is changed to the current time.

Using the DNS cache

These steps provides the minimum information that you need to use the DNS
cache.

Procedure

Perform the following steps to use the DNS cache:

1.

Create the initialization module, which in turn defines and initializes the file
and the EZACIC25 module. See [‘Step 1: Create the initialization module” on|

Define the cache files to CICS. See [“Step 2: Define the cache file to CICS” on|

Use EZACIC25 to replace GETHOSTBYNAME calls in CICS application
modules. See [“Step 3: Issue EZACIC25” on page 103/

Chapter 3. Configuring the CICS Domain Name Server cache 99

Results

Step 1: Create the initialization module

The initialization module is created using the EZACICR macro. A minimum of two
invocations of the macro are coded and assembled and the assembly produces the
module. An example follows:

EZACICR TYPE=INITIAL
EZACICR TYPE=FINAL

This produces an initialization module which creates one record of binary zeros. If
you want to preload the file with dummy records for frequently referenced domain
names, it resembles the following:

EZACICR TYPE=INITIAL

EZACICR TYPE=RECORD,NAME=HOSTA

EZACICR TYPE=RECORD,NAME=HOSTB

EZACICR TYPE=RECORD,NAME=HOSTC
EZACICR TYPE=FINAL

where HOSTA, HOSTB, AND HOSTC are the host names you want in the dummy
records. The names can be specified in any order.

The specifications for the EZACICR macro are as follows:

Operand
Meaning

TYPE There are three acceptable values:
Value Meaning

INITIAL
Indicates the beginning of the generation input. This value should
appear only once and should be the first entry in the input stream.

RECORD
Indicates a dummy record the user wants to generate. There can be
from 0 to 4096 dummy records generated and each of them must
have a unique name. Generating dummy records for frequently
used host names improves the performance of the cache file. A
TYPE=INITIAL must precede a TYPE=RECORD statement.

FINAL
Indicates the end of the generation input. This value should appear
only once and should be the last entry in the input stream. A
TYPE=INITIAL must precede a TYPE=FINAL.
AVGREC

The length of the average cache record. This value is specified on the
TYPE=INITIAL macro and has a default value of 500. Use the default
value until you have adequate statistics to determine a better value. This
parameter is the same as the first subparameter in the RECORDSIZE
parameter of the IDCAMS DEFINE statement. Accurate definition of this
parameter along with use of dummy records minimizes control interval
and control area splits in the cache file.

NAME
Specifies the host name for a dummy record. The name must be from 1 to
255 bytes long. The NAME operand is required for TYPE=RECORD
entries.

100 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

The macro can be used in conjunction with IDCAMS to define and load the file.
The following example shows a sample job to define and initialize a cache file:

Figure 81. Example of defining and initializing a DNS cache file

//CACHEDEF JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1) ,MSGCLASS=A,CLASS=A

/1%

//* z/0S Communications Server

//* SMP/E distribution name: EZACIDNS

/1*

//* Licensed Materials - Property of IBM

//* "Restricted Materials of IBM"

//* 5650-Z0S

//* Copyright IBM Corp. 2000, 2015

/1%

//* Status = CSV2R2

/1%

//* Function: This job defines and then Toads the VSAM
//* file used for the CICS TCP cache. The job stream
//* has the following steps:

/1%

//* 1. Delete a cache file if one exists

//* 2. Define the VSAM cache file to VSAM

//* 3. Assemble the initialization program

//* 4. Link the initialization program

//* 5. Execute the initialization program to load the
/1% VSAM cache file

/1%

//* Change Activity =
//* Flag Reason Release Date Origin Description
2
/1% $31= 20817 RFBASE 140312 MWS Ship sample
2 2y
A
//* THIS STEP DELETES AN OLD COPY OF THE FILE
//* IF ONE IS THERE.
/1%
//DEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD =
DELETE -
CICS.USER.CACHE -
PURGE -
ERASE
/1%
//* THIS STEP DEFINES THE NEW FILE
/1%
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=x
//SYSIN DD =
DEFINE CLUSTER (NAME(CICS.USER.CACHE) VOLUMES(CICVOL) -
CYL(1 1) -
RECORDSIZE (500 1000) FREESPACE(® 15) -
INDEXED) -
DATA (-
NAME (CICS.USER.CACHE.DATA) -
KEYS (255 0)) -
INDEX (-
NAME (CICS.USER.CACHE.INDEX))

/*

/1%

//* THIS STEP DEFINES THE FILE LOAD PROGRAM

/1%

//ASM EXEC PGM=ASMA90,PARM="'0BJECT,TERM',REGION=1024K
//SYSLIB DD DISP=SHR,DSNAME=SYS1.MACLIB

// DD DISP=SHR,DSNAME=TCPV34.SEZACMAC

//SYSUTL DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPUNCH DD DISP=SHR,DSNAME=NULLFILE

//SYSLIN DD DSNAME=&&0BJSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(400, (500,50)),

// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
//SYSTERM DD SYSOQUT=*

Chapter 3. Configuring the CICS Domain Name Server cache

101

//SYSPRINT DD
//SYSIN DD

SYSOUT=~

*

EZACICR TYPE=INITIAL
EZACICR TYPE=RECORD,NAME=RALVM12

EZACICR TYPE=FINAL

/*
//LINK
/l
//SYSPRINT DD
//SYSUT1 DD
//SYSLMOD DD

//

//SYSLIN DD
/%

//* THIS STEP
/]*
//LOAD
//
//EZACICRF DD

EXEC

EXEC

102

PGM=IEWL,PARM="'LIST,MAP,XREF',
REGION=512K,COND=(4,LT,ASM)

SYSOUT=~

SPACE=(CYL, (5,1)),DISP=(NEW,PASS) ,UNIT=SYSDA
DSNAME=8&LOADSET (GO) ,DISP=(MOD, PASS) ,UNIT=SYSDA,
SPACE=(TRK, (1,1,1)),

DCB= (DSORG=PO,RECFM=U, BLKSIZE=32760)
DSNAME=880BJSET,DISP=(OLD, DELETE)

EXECUTES THE FILE LOAD PROGRAM

PGM=+, LINK.SYSLMOD,
COND=((4,LT,DEFINE), (4,LT,ASM), (4,LT,LINK))
DSN=CICS.USER.CACHE,DISP=0LD

After the cache file has been created, it has the following layout:

Field name
Description

Host name
A 255-byte character field specifying the host name. This field is the key to
the file.

Record type
A 1-byte binary field specifying the record type. The value is X'00000001'.

Last refresh time
An 8-byte packed field specifying the last refresh time. It is expressed in
seconds because 0000 hours on January 1, 1990 and is derived by taking
the ABSTIME value obtained from an EXEC CICS ASKTIME and
subtracting the value for January 1, 1990.

Offset to alias pointer list
A halfword binary field specifying the offset in the record to DNSALASA.

Number of INET addresses
A halfword binary field specifying the number of INET addresses in
DNSINETA.

INET addresses
One or more fullword binary fields specifying INET addresses returned
from GETHOSTBYNAME().

Alias names
An array of variable length character fields specifying the alias names
returned from the name server cache. These fields are delimited by a byte
of binary zeros. Each of these fields have a maximum length of 255 bytes.

Step 2: Define the cache file to CICS

All CICS definitions required to add this function to a CICS system can be done
using CICS RDO without disruption to the operation of the CICS system.

Use the following parameters with RDO FILE to define the cache file:

RDO keyword
Value
File EZACACHE

Group Name of group you are placing this function in.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

DSName
Must agree with name defined in the IDCAMS in [“Step 1: Create the]
linitialization module” on page 100| (for example, CICS.USER.CACHE).

STRings
Maximum number of concurrent users.

Opentime
Startup

Disposition
Old

DAtabuffers
STRings value X 2

Indexbuffers
Number of records in index set.

Table User

Maxnumrecs
Maximum number of destinations queried.

RECORDFormat
Vv
Use the following parameters with RDO PROGRAM to define the EZACIC25

module:

RDO keyword
Value

PROGram
EZACIC25

Group Name of group you are placing this function in
Language

Assembler

Step 3: Issue EZACIC25

EZACIC25 replaces the GETHOSTBYNAME socket call. It is invoked by a EXEC
CICS LINK COMMAREA (com-area) where com-area is defined as follows:

Field name
Description

Return code
A fullword binary variable specifying the results of the function:

Value Meaning

-1 ERRNO value returned from GETHOSTBYNAME() call. Check
ERRNO field.

0 Host name could not be resolved either within the cache or by use
of the GETHOSTBYNAME call.

Note: In some instances, a 10214 errno is returned from the
resolve, which can mean that the host name could not be resolved
by use of the GETHOSTBYNAME call.

1 Host name was resolved using cache.

Chapter 3. Configuring the CICS Domain Name Server cache 103

104

2 Host name was resolved using GETHOSTBYNAME call.

ERRNO
A fullword binary field specifying the ERRNO returned from the
GETHOSTBYNAME call.

HOSTENT address
The address of the returned HOSTENT structure.

Command
A 4-byte character field specifying the requested operation.

Value Meaning

GHBN
GETHOSTBYNAME. This is the only function supported.

Namelen
A fullword binary variable specifying the actual length of the host name
for the query.

Query_Type
A 1-byte character field specifying the type of query:

Value Meaning

0 Attempt query using cache. If unsuccessful, attempt using
GETHOSTBYNAMEY() call.
1 Attempt query using GETHOSTBYNAME() call. This forces a cache

refresh for this entry.
2 Attempt query using cache only.
Note: If the cache contains a matching record, the contents of that record is
returned regardless of its age.
Name A 256-byte character variable specifying the host name for the query.

If the transaction program is executing in the Open Transaction Environment, a
TCB switch occurs for each call to EZACIC25.

HOSTENT structure

The returned HOSTENT structure is shown in [Figure 82 on page 105}

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Hostent

Hostname——

Address of

Name X'00'

Address of

Address of

—— Alias#1 X'00"'

X'00000002'

Address of

— Alias#2 X'00'

Address of

— Alias#3 X'00'

X'00000004'

X'00000000'

Address of

Address of

— INET Addr#1

Figure 82. The DNS HOSTENT

Address of

— INET Addr#2

Address of

— > INET Addr#3

X'00000000'

Chapter 3. Configuring the CICS Domain Name Server cache

105

106 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 4. Managing IP CICS sockets

Use the CICS TCP/IP interface to:

* Customize your system so that CICS TCP/IP starts and stops automatically. See
[“Starting and stopping CICS automatically.”|

* Manually start and stop CICS TCP/IP after CICS has been initialized. An
operator can also query and change specific CICS TCP/IP interface attributes
after CICS has been initialized. See [“IP CICS socket interface management” on|
_ae 108.

* Start and stop CICS TCP/IP from a CICS application program. See
lstopping CICS TCP/IP with program link” on page 122

* Handle task hangs for TCP/IP CICS socket applications. See

[hangs” on page 123 |

Restriction: The IP CICS Socket Operator transaction, EZAQO, is not designed to be
run from the CICS terminal associated with the MVS system console.

Starting and stopping CICS automatically

Modify the CICS Program List Table (PLT) to start and stop the CICS socket
interface automatically.

e Startup (PLTPI)

To start the IP CICS socket interface automatically, make the following entry in
PLTPI after the DFHDELIM entry:

*

* PLT USED TO SUPPORT IP CICS SOCKETS STARTUP

*

DFHPLT TYPE=INITIAL,SUFFIX=SI
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

*

* Add other IP CICS Socket PLT startup programs here...

*

DFHPLT TYPE=FINAL
END

* Shutdown (PLTSD)

To shut down the IP CICS socket interface automatically (including all other IP
CICS sockets enabled programs), make the following entry in the PLTSD before
the DFHDELIM entry:

*

* PLT USED TO SUPPORT IP CICS SOCKETS SHUTDOWN

*

DFHPLT TYPE=INITIAL,SUFFIX=SD

*

* Add other IP CICS Socket PLT shutdown programs here...

*

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
DFHPLT TYPE=FINAL

END

Requirement: If the IP CICS socket interface is started in the PLT (started by
invoking EZACIC20), the PLTPIUSR user ID also requires the UPDATE access to
the EXITPROGRAM resource when CICS command security is active. Failure to

© Copyright IBM Corp. 2000, 2015 107

have at least the UPDATE access to the EXITPROGRAM resource causes the IP
CICS socket interface and listener to not start when starting or not stop when
stopping. Message EZY1350E is issued, and the IP CICS socket interface does not
start.

IP CICS socket interface management

108

Use the EZAO operator transaction to start CICS TCP/IP manually. You should
run the EZAO transaction on the CICS region where you want the intended action
to occur.

This operational transaction has the following functions:

Interface Startup
Starts the interface in a CICS address space and starts all listeners that are
identified for immediate start.

Requirement: The EZAO transaction must be running on the CICS where
you want to start the CICS sockets interface. You cannot start a CICS
socket interface from a different CICS.

Interface Shutdown
Stops the interface in a CICS address space.

Listener Startup
Starts a listener in a CICS address space.

Listener Shutdown
Stops a listener in a CICS address space.

Set Interface
Alters some attributes of the IP CICS socket interface and listener.

Query Interface
Shows the current value of some attributes of the IP CICS socket interface
and listener.

Trace startup
Starts CICS tracing for the CICS socket interface in a CICS address space.

Trace shutdown
Stops CICS tracing for the CICS socket interface in a CICS address space.

When you enter EZAOQ, the following screen is displayed:

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

4 N
EZAO APPLID =

Enter one of the following

SET
INQUIRE
START
STOP

PF 3 END 12 CNCL
-

Figure 83. EZAO initial screen

Using the INQUIRE function

Use the INQUIRE function to query certain IP CICS socket interface and listener
attributes. Use the EZAO,SET command to dynamically change any values. The
INQUIRE function can be abbreviated as INQ. Use the EZAO,INQUIRE command
to query certain values. If you enter INQ in the screen shown in or enter
the EZAO,INQ command on a blank screen, the following screen is displayed:

Chapter 4. Managing IP CICS sockets 109

4 N
EZAO, INQUIRE APPLID =
Enter one of the following
CcICS ===> Enter Yes|No
LISTENER ===> Enter Yes|No
PF 3 END 12 CNCL
- J
Figure 84. EZAO INQUIRE screen
If you enter INQUIRE CICS, the following screen is displayed:
4 N
EZAO, INQUIRE,CICS APPLID =
TRACE ===> ,,, Trace CICS Sockets
MAXOPENTCBS ===> CICS open API, L8, TCB Limit
ACTOPENTCBS ===> Active CICS open API, L8, TCBs
TCBLIM ===> ,.... Open API TCB Limit
ACTTCBS ===> ,.... Number of Active open API TCBs
QUEUEDEPTH ===> Number of Suspended Tasks
SUSPENDHWM ~ ===> Suspended Tasks HWM
APPLDAT ===> Register Application Data
PF 3 END 12 CNCL
- J

Figure 85. EZAO INQUIRE CICS screen

This screen displays the following information:

e TRACE is the current IP CICS sockets CICS tracing flag.

¢ MAXOPENTCBS is the CICS limit of open API TCBs.

* ACTOPENTCBS is the current number of open API TCBs in use across all CICS.
e TCBLIM is the IP CICS sockets-imposed TCB limit.

* ACTTCBS is the current number of open API TCBs in use by IP CICS sockets.

* QUEUEDEPTH is the current number of CICS tasks suspended as the result of
TCB limit (TCBLIM).

110 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

¢ SUSPENDHWM is the high-water mark of CICS tasks suspended as the result of
TCB limit (TCBLIM).

¢ APPLDAT indicates whether the IP CICS socket interface automatically registers
socket application data.

If you enter INQUIRE LISTENER, the following screen is displayed where you can
choose from a list of active listeners:

Figure 86. EZAO INQUIRE LISTENER selection screen

/EZAO,INQUIRE,LISTENER APPLID = A
Choose a Tistener transaction:
Sel Tran Task# Type Day Date Time Message
e i e e mm/dd/yy hhimm:ss .oieeieniiiee i
e e e e mm/dd/yy hhimmess ouieerriie ittt
et et e e mm/dd/yy hhimmiss wuuuereriiiiiieeiieennnnnnn
e i e e mm/dd/yy RRimm:ss ooeerriie ittt
et et e el mm/dd/yy hhimmiss wunueeereiiiiieiiienaannnn
e i e e mm/dd/yy hhimm:ss oeeiuniiie ittt
et e e e mm/dd/yy hhimm:ss ...veeennieneiiinneeneennnnnn
e e e e mm/dd/yy hhimm:ss ..ottt
e e e e mm/dd/yy RRimmess ooieeinii ittt
et et e e mm/dd/yy hhimmiss wuunreeeeiiii i eeiieennnnnnn
e i e e mm/dd/yy Rhimm:ss ooeeeeiiie ittt
e e e e mm/dd/yy hhimmiss «uunueeeeeiiii i eeannann
e i e e mm/dd/yy hhimm:ss .oieeeeiiie ittt
. 0000 0000006 BOOLOBA0 oD mm/dd/yy hhamm:ss ..vienniiiiiii ittt
PF 3 END 7 DOWN 8 UP 9 TOP 10 BOTTOM 12 CNCL ENTER SELECT)

If you select a listener transaction, the following screen is displayed:

Chapter 4. Managing IP CICS sockets 111

Figure 87. EZAO INQUIRE LISTENER screen

s

EZAO, INQUIRE,LISTENER(....) APPLID =

LAPPLD ===> Register Application Data

PF 3 END 12 CNCL
o

The LAPPLD entry indicates whether the IP CICS socket interface automatically
registers socket application data for the listener.

Using the SET function

Use the SET function to dynamically change certain attributes of the IP CICS
socket interface and listener. Changes made in this way are not reflected in the
configuration options contained in the EZACONFG dataset. Use the
EZAO,INQUIRE command to query some values. If you enter SET in the screen
shown in [Figure 83 on page 109 or if you enter EZAO,SET on a blank screen, the
following screen is displayed:

112 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EZAO,SET APPLID =
Enter one of the following
CcICS ===> . Enter Yes|No
LISTENER ===> ... Enter Yes|No
PF 3 END 12 CNCL
J
Figure 88. EZAO SET screen
If you enter SET CICS, the following screen is displayed:
4 N\
EZAO,SET,CICS APPLID =
Overtype to Enter
TRACE ===> .. Trace CICS Sockets
TCBLIM ===> ... Open API TCB Limit
APPLDAT ===> ., Register Application Data
PF 3 END 12 CNCL
J

Figure 89. EZAO SET CICS screen

This screen displays the following information:
¢ TRACE is the current IP CICS sockets CICS tracing flag. Specify YES or NO to
dynamically enable or disable IP CICS sockets CICS tracing.

* TCBLIM is the current IP CICS sockets-imposed TCB limit. Specify a value in the
range 0 to the value specified by the MAXOPENTCBS option to dynamically
change the TCB limiting factor.

Chapter 4. Managing IP CICS sockets 113

* APPLDAT is the current IP CICS socket interface socket application data
registration flag. Specify YES or NO to dynamically enable or disable the
registration of socket application data.

If you enter SET LISTENER, the following screen is displayed where you can
choose from a list of active listeners:

Figure 90. EZAO SET LISTENER selection screen

114

/,EZAO,SET,LISTENER APPLID =
Choose a Tistener transaction:

Sel Tran Task# Type Day Date Time Message

...................... mm/dd/yy hhimmiss «oueeeeiiiii i eiiiieeaannnn
...................... mm/dd/yy hhimm:Ss «.oveeeieeiineenennnnnnnn
...................... mm/dd/yy hhamm:Ss ..vieniieiii it iineennnnnn
...................... mm/dd/yy hhimmiSs wunreeeeeiiiieiiiieennnnnnn
...................... mm/dd/yy RRimmess ooieernii ittt e
...................... mm/dd/yy hhimmiss «oueeeeeiiiiieeiiienaannnn
...................... mm/dd/yy Rhimmsss ooieeeniie ittt
...................... mm/dd/yy hhimm:ss ...veeenniiieiiiieneerennnnnnn
...................... mm/dd/yy hhimm:ss ..oiveeeniiieeiiiiiieeiinnnann
...................... mm/dd/yy RRimmess voieerniiiei ittt
...................... mm/dd/yy hhimmisSs wuurereeeiiiiieiiieennnnnnn
...................... mm/dd/yy Rhimmess ooieeuriiie ittt
...................... mm/dd/yy hhimmiss «nereeeiiiiieiiienaannnn
...................... mm/dd/yy hhimm:Ss «.veeeeeeeieeeeennnnnnnn

\\PF 3 END 7 DOWN 8 UP 9 TOP 10 BOTTOM 12 CNCL ENTER SELECT

If you select a listener transaction, the following screen is displayed:

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Figure 91. EZAO SET LISTENER screen

/EZAO,SET,LISTENER(....) APPLID = A
Overtype to Enter
LAPPLD ===> ... Register Application Data
PF 3 END 12 CNCL

- J

The LAPPLD entry indicates whether the IP CICS socket interface registers socket
application data for the listener.

Using the START function

The START function starts the CICS socket interface or a listener within the
interface. When the interface is started, all listeners marked for immediate start are
also started. The START function also enables CICS tracing for the CICS socket
interface and the listener.

If you type STA on the current screen or type EZAO STA on a blank screen, the
following screen is displayed:

Chapter 4. Managing IP CICS sockets 115

EZAO,START AAALID) 8 co000000

Enter one of the following

CcICS ===> Enter Yes|No
LISTENER ===> Enter Yes|No
TRACE ===> Enter Yes|No
PF 3 END 12 CNCL

Figure 92. EZAO START screen

EZAO START CICS
If you type START CICS, the following screen is displayed:

Ve
EZAO,START,CICS APPLID =

APPLID= =2 55000000 APPLID of CICS

CICS socket interface Startup Complete

PF 3 END 12 CNCL
-

Figure 93. EZAO START CICS response screen

EZAO START LISTENER
If you type START LISTENER, the following screen is displayed:

116 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

e ™
EZAO,START, LISTENER APPLID =
APPLID= =B 50000000 APPLID of CICS
LISTENER ===> Enter Name of listener
PF 3 END 12 CNCL
- J
Figure 94. EZAO START LISTENER screen
After you type the listener name, the listener starts. The following screen is
displayed, and the results appear in the message area:
4 ™
EZAO,START, LISTENER(CSKL) APPLID =
APPLID= S8 55000000 APPLID of CICS
LISTENER =P 5000 Enter Name of listener
CICS socket interface Tistener CSKL is Started
PF 3 END 12 CNCL
J

Figure 95. EZAO START LISTENER result screen

EZAO START TRACE
If you type START TRACE, the following screen is displayed:

Chapter 4. Managing IP CICS sockets 117

4 N
EZAO,START, TRACE AAALID) 8 co000000
APPLID= =L (0000000 APPLID of CICS
CICS/SOCKETS CICS TRACING IS ENABLED
PF 3 END 12 CNCL
- J

Figure 96. EZAO START TRACE screen

Issue the EZAO,START,TRACE command on the CICS region where APPLID
matches the IP CICS socket interface and where CICS tracing is to be started.

Using the STOP function

The STOP function is used to stop the CICS socket interface or a listener within the
interface. If the interface is stopped, all listeners are stopped before the interface is
stopped. The STOP function also disables CICS tracing for the CICS socket
interface and the listener. If you type STO in the screen shown in

or enter EZAO STO on a blank screen, the following screen is displayed:

118 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Ve
EZAO,STOP

Enter one of the following

APALD) 8 co00000c

CcICS === Enter Yes|No
LISTENER === Enter Yes|No
TRACE === Enter Yes|No
PF 3 END 12 CNCL
J
Figure 97. EZAO STOP screen
EZAO STOP CICS
If you specify STOP CICS, the following screen is displayed:
/ N
EZAO,STOP,CICS APPLID =
APPLID= ==> ,....... APPLID of CICS
IMMEDIATE === Enter Yes|No
PF 3 END 12 CNCL
. J

Figure 98. EZAO STOP CICS screen

The following options are available to stop CICS TCP/IP:

IMMEDIATE=NO
Used this option in most cases because it gracefully terminates the
interface. This option has the following effects on applications using this
APL
* If no other socket applications are active or suspended, the listener
transaction (CSKL) quiesces after a maximum wait of 3 minutes.

Chapter 4. Managing IP CICS sockets 119

* If active or suspended sockets applications exist, the listener allows them
to continue processing. When all of these tasks are complete, the listener
terminates.

* This option denies access to this API for all new CICS tasks. Tasks that

start after CICS TCP/IP has been stopped END with the CICS abend
code AEYO9.

IMMEDIATE=YES
This option is reserved for unusual situations and abruptly terminates the
interface. It has the following effect on applications using this API:
¢ Purges the master server (listener) CSKL.
* Denies access to the API for all CICS tasks. Tasks that have successfully
called the API previously abend with the AETA abend code on the next

socket call. New tasks that have started are denied by the AEY9 abend
code.

After you choose an option, the stop is attempted. The screen is displayed again,
and the results appear in the message area.

EZAO STOP LISTENER
If you specify STOP LISTENER, the following screen is displayed:

4 ™\
EZAO,STOP,LISTENER APPLID =
APPLID= ===> APPLID of CICS
LISTENER ===> ... Enter Name of Tistener
PF 3 END 12 CNCL
o J

Figure 99. EZAO STOP LISTENER screen

When you input the listener named, that listener is stopped. The screen is
displayed again, and the results appear in the message area.

EZAO STOP TRACE
If you specify STOP TRACE, the following screen is displayed:

120 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

- N
EZAO,STOP, TRACE AAALD) 8 co00000c
APPLID= =B 50000000 APPLID of CICS
CICS/SOCKETS CICS TRACING IS DISABLED
PF 3 END 12 CNCL
- /

Figure 100. EZAO STOP TRACE screen

Issue the EZAO,STOP,TRACE command on the CICS region where APPLID
matches the IP CICS socket interface and where CICS tracing is to be stopped.

Abbreviating the EZAO transaction parameters

It is possible to abbreviate the parameters of the EZAO transaction, but a
minimum of three characters must be specified. This capability allows the
command to be issued using minimal keystrokes. The following list of commands
shows the abbreviated parameters:

EZAO,STArt,CICs
Starts the interface

EZAO,STOp,CICs
Stops the interface

EZAO,STArt LIStener
Starts a listener

EZAO,STOp,LIStener
Stops a listener

EZAO,STArt, TRAce
Enables CICS tracing

EZAO,STOp,TRAce
Disables CICS tracing

Note:

¢ The values in uppercase characters are the minimal acceptable value for
parameters.

* You can use spaces instead of commas as a parameter delimiter. This is shown
in the following example:

EZAO STArt CICs

This is the same as the following:

Chapter 4. Managing IP CICS sockets 121

EZAO,STArt,CICs

Starting and stopping CICS TCP/IP with program link

Issue an EXEC CICS LINK to program EZACIC20 to start or stop the CICS socket
interface. You need to follow these steps in the LINKing program.

Procedure

Perform the following steps to start or stop the CICS socket interface with program
link:

1. Define the COMMAREA for EZACIC20 by including the following instruction
in your DFHEISTG definition:

EZACICA AREA=P20,TYPE=CSECT

The length of the area is equated to P20PARML, and the name of the structure
is P20PARMS.

2. Initialize the COMMAREA values as follows:

P20TYPE
I Initialization
T Immediate termination
D Deferred termination
Q Quiesce the CICS socket interface by querying the PLT
shutdown immediate configuration option and performing the
shutdown based on the results of that query
P200B]J
C CICS sockets interface
L Listener
P20LIST

Name of listener (if this is listener initialization or termination)
3. Issue the EXEC CICS LINK to program EZACIC20. EZACIC20 does not return
until the function is complete.

4. Check the P20RET field for the response from EZACIC20. See the P20RET field
of the P20PARMS structure in the hlq.SEZACMAC(EZACICA) macro for the
meanings of the return values from calling EZACIC20.

Results

EZACIC20 can issue the following user abend codes:

* Abend code E20L is issued if the CICS socket interface is not in startup or
termination and no COMMAREA was provided.

* Abend code E20T is issued if CICS is not active or if you run the EZACIC20
program at the wrong PLT phase. See [‘CICS program list table” on page 47| for
more information about setting CICS TCP sockets to automatically startup or
shutdown by using updates to the PLT.

122 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Handling task hangs

TCP/IP CICS socket applications might encounter hangs when they are using
sockets API blocking calls. The most common scenario occurs when the remote
peer fails to send data for the read or receive functions that are issued by the CICS
socket application. When this situation occurs, get the read data from the socket
before using a select or selectex function call. However, even when you use these
functions to get the read data, you must end the hung transactions. The external
symptom of this kind of hang in CICS is that the transactions are in an external
wait in the TCP/IP CICS TRUE (module EZACICO01).

Perform one of the following two tasks to terminate a transaction that is in an

external wait in EZACICO1:

* Set the APPLDAT value to YES in the TYPE=CICS configuration (EZAC
transaction). You can use the NETSTAT CONN APPLDATA (CLIENT
CICSjobname command to correlate the connection IDs to the associated hung
transactions. The following sample shows the Netstat output when you use the

appldata keyword:

EZz25851 User Id Conn Local Socket Foreign Socket State
EZZ25861 ------- sy
EZZ25871 CICS 00006BFO 0.0.0.0..3010 0.0.0.0..0 Listen

EZz25911 Application Data: EZACICSO CSKL 0000037

The data that is returned consists of the transaction name (CSKL in the sample)
and the CICS transaction number (0000037 in the sample).

By using this data with the TCP/IP Conn ID (00006BF0 in the sample), you can
issue a Netstat drop command to take the following actions:

— Stop the connection from a TCP/IP perspective.
— Cause the outstanding blocking function call to fail.
— Return control to the application.

* Use CEMT force purge from CICS.

Note: CEMT purge or DTIMEOUT do not have an effect because the TCP/IP
CICS TRUE is defined as non-purgeable.

Chapter 4. Managing IP CICS sockets 123

124 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 5. Writing your own listener

The IP CICS socket interface provides a structure that supports multiple listeners.
These listeners can be multiple copies of the IBM-supplied listener, user-written
listeners, or a combination of the two. You can also run without a listener.

For each listener (IBM-supplied or user-written), there are certain basic
requirements that enable the interface to manage the listeners correctly, particularly
during initialization and termination. They are:

* Each listener instance must have a unique transaction name, even if you are
running multiple copies of the same listener.

* Each listener should have an entry in the CICS sockets configuration data set.
Even if you do not use automatic initiation for your listener, the lack of an entry
would prevent correct termination processing and could prevent CICS from
completing a normal shutdown.

For information on the IBM-supplied listener, see [CICS application transaction|
[(TBM listener)” on page 141

Prerequisites for writing your own listener

Some installations can require a customized, user-written listener. Writing your
own listener has the following prerequisites:

1. Determine what capability is required that is not supplied by the IBM-supplied
listener. Is this capability a part of the listener or a part of the server?

2. Knowledge of the CICS-Assembler environment is required.

3. Knowledge of multi-threading applications is required. A listener must be able
to perform multiple functions concurrently to achieve good performance.

4. Knowledge of the CICS socket interface is required.

5. Knowledge of how to use compare and swap logic for serially updating shared
resources.

Using IBM environmental support for user-written listeners

A user-written listener can use the environmental support supplied and used by
the IBM-supplied listener. To employ this support, the user-written listener must
do the following in addition to the requirements described in [“Prerequisites for|

[writing your own listener”}

e The user-written listener must be written in Assembler.

* The RDO definitions for the listener transaction and program should be identical
to those for the IBM-supplied listener with the exception of the
transaction/program names. Reference the program definition for the
IBM-supplied listener, EZACIC02, in SEZAINST(EZACICCT).

© Copyright IBM Corp. 2000, 2015 125

DEFINE PROGRAM(EZACICO2)
DESCRIPTION(IBM LISTENER)
GROUP (SOCKETS) CEDF (YES)
RELOAD(NO) RESIDENT(YES)

DATALOCATION(ANY) EXECKEY(CICS)
USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS(ENABLED) USAGE (NORMAL)

CONCURRENCY (THREADSAFE)

Figure 101. Program Definition for listener EZACIC02

In the program, define an input area for the configuration file records. If you are
going to read the configuration file using MOVE mode, you can define the area
by making the following entry in your DFHEISTG area:

EZACICA AREA=CFG,TYPE=CSECT

If you are going to read the configuration file using LOCATE mode you can
define a DSECT for the area as follows:

EZACICA AREA=CFG,TYPE=DSECT

In either case, the length of the area is represented by the EQUATE label
CFGLEN. The name of the area/DSECT is CFG0000.

In the program, define a DSECT for mapping the Global Work Area (GWA). This
is done by issuing the following macro:
EZACICA AREA=GWA,TYPE=DSECT

The name of the DSECT is GWAO0000.
In the program, define a DSECT for mapping the Task Interface Element (TIE).
This is done by issuing the following macro:

EZACICA AREA=TIE,TYPE=DSECT

The name of the DSECT is TIE0000.
In the program define a DSECT for mapping the listener Control Area (LCA).
This is done by issuing the following macro:

EZACICA AREA=LCA,TYPE=DSECT

The name of the DSECT is LCA0000.

Obtain address of the GWA. This can be done using the following CICS
command:

EXEC CICS EXTRACT EXIT PROGRAM(EZACICO1) GASET(ptr) GALEN(len)

where ptr is a register and len is a halfword binary variable. The address of the
GWA is returned in ptr and the length of the GWA is returned in len. Use of the
Extract Exit command requires UPDATE access to the EXITPROGRAM resource.
Failure to have at least the UPDATE access to the EXITPROGRAM resource
causes the IP CICS socket interface and listener to either not start when starting
or not stop when stopping.

Guideline: As of CICS/TS 2.3, the EXEC CICS EXTRACT command is not
threadsafe. If the interface is using the CICS Open Transaction Environment, you
should issue this command with other non-threadsafe commands to prevent
excessive TCB switching.

Read the configuration file during initialization of the listener. The configuration
file is identified as EZACONEFG in the CICS Configuration file. The record key
for the user-written listener is as follows:

- APPLID

126 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

An 8-byte character field set to the APPLID value for this CICS. This value
can be obtained from the field GWACAPPL in the GWA or by using the
following CICS command:

EXEC CICS ASSIGN APPLID(applid)

where applid is an 8-byte character field.
— Record Type
A 1-byte character field set to the record type. It must have the value L.
— Reserved Field
A 3-byte hex field set to binary zeros.
- Transaction
A 4-byte character field containing the transaction name for this listener. It
can be obtained from the EIBTRNID field in the Execute Interface Block.

The configuration record provides the information entered by either the
EZACICD configuration macro or the EZAC Configuration transaction. The
user-written listener can use this information selectively, but it is preferred
because it contains the values specified for PORT, BACKLOG, and NUMSOCK.
See |Chapter 2, “Setting up and configuring CICS TCP/IP,” on page 23| for more
information about the configuration data set with EZACICD TYPE parameter
subsection.

For shared files: If the user-written listener reads the configuration file, it must
first issue an EXEC CICS SET command to enable and open the file. When the
file operation is complete, the user-written listener must issue an EXEC CICS
SET command to disable and close the file. Failure to do so results in file errors
in certain shared-file situations.

Requirement: Use of the EXEC CICS ENABLE command requires UPDATE
access to EXITPROGRAM resources. Failure to have at least the UPDATE access
to the EXITPROGRAM resource causes the IP CICS socket interface and listener
to either not start when starting or not stop when stopping.

The user-written listener should locate its listener Control Area (LCA). The LCAs
are located contiguously in storage with the first one pointed to by the
GWALCAAD field in the GWA. The correct LCA has the transaction name of the
listener in the field LCATRAN.

The user-written listener should set the LCASTAT field to a value specified by
LCASTATP so that the IP CICS socket interface is aware that the listener is
active. Otherwise, the IP CICS sockets listener termination logic bypasses the
posting of the listeners termination ECB.

The user-written listener should monitor either the LCASTAT field in the LCA or
the GWATSTAT field in the GWA for shutdown status. If either field shows an
immediate shutdown in progress, the user-written listener should terminate by
issuing the EXEC CICS RETURN command and allow the interface to clean up
any socket connections. If either field shows a deferred termination in progress,
the user-written listener should do the following:

1. Accept any pending connections, and close the passive (listen) socket.

2. Complete the processing of any sockets involved in transaction initiation
(that is, processing the GIVESOCKET command). When processing is
complete, close these sockets.

3. When all sockets are closed, issue the EXEC CICS RETURN command.

The user-written listener should avoid socket calls which imply blocks
dependent on external events such as ACCEPT or READ. These calls should be
preceded by a single SELECTEX call that waits on the ECB LCATECB in the

Chapter 5. Writing your own listener 127

128

LCA. This ECB is posted when an immediate termination is detected, and its
posting causes the SELECTEX to complete with a RETCODE of 0 and an
ERRNO of 0. The program should check the ECB when the SELECTEX
completes in this way as this is identical to the way SELECTEX completes when
a timeout happens. The ECB can be checked by looking for a X'40' in the first
byte (post bit).

This SELECTEX should also specify a timeout value. This provides the listener
with a way to periodically check for a deferred termination request. Without
this, CICS sockets Deferred Termination or CICS Deferred Termination cannot
complete.

The user-written listener should use a non-reusable subtask. Issue the INITAPI
command or an INITAPIX command with the letter L in the last byte of the
subtask name. The user-written listener implements the termination and detach
logic in the same way that the IBM-supplied listener does.

The user-written listener should update LCASTAT with one of the following:

LCASTAT DS X Status of this Tistener

LCASTATO EQU B'00000000' Listener not in operation
LCASTATI EQU B'00000001' Listener in initialization
LCASTATS EQU B'00000010' Listener in SELECT

LCASTATP EQU B'00000100' Listener processing

LCASTATE EQU B'00001000' Listener had initialization error
LCASTATC EQU B'00010000' Immediate termination in progress
LCASTATD EQU B'00100000' Deferred termination in progress
LCASTATA EQU B'01000000' Listener is active

LCASTATR EQU B'10000000' Listener is CICS delayed retry

Rule: If IP CICS sockets is configured to use CICS's Open Transaction
Environment, then ensure that you serially update the LCASTAT vaue. The
Listener Control Area (LCA) is part of the global work area (GWA), and is
considered to be a shared resource. An appropriate value to move into
LCASTAT would be LCASTATP (B'00000100") when the user-written listener
starts. This value enables the CICS socket logic to correctly post the LCATECB
during both deferred and immediate termination.

User-written listener programs can use the LCASTAT2A status flag to determine
whether this listener should register application data. The user-written listener
should update LCASTAT2 with one of the following;:

LCASTAT2 DS X Listener status byte 2

LCASTAT2C EQU B'00000001"' Listener can now connect to TCP
LCASTAT2A EQU B'00000010' Register Application Data
LCASTAT2H EQU B'00000100' LAPPLD inherits APPLDAT
LCASTAT2S EQU B'00100000" This is a STANDARD Tistener
LCASTAT2E EQU B'01000000' This is an ENHANCED Tistener
LCASTAT26 EQU B'10000000' Listeners AF is AF_INET6

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 6. Writing applications that use the IP CICS sockets
API

This topic describes how to write applications that use the IP CICS sockets API. It
describes typical sequences of calls for client, concurrent server (with associated
child server processes), and iterative server programs. The contents of the topic
are:

* The following setups for writing CICS TCP/IP applications are available:

— Concurrent server (the supplied listener transaction) and child server
processes run under CICS TCP/IP.

— The same as 1 but with a user-written concurrent server.
— An iterative server running under CICS TCP/IP.
— A client application running under CICS TCP/IP.
* Socket addresses
* MVS address spaces
* GETCLIENTID, GIVESOCKET, and TAKESOCKET commands
* The listener program
* CICS Open Transaction Environment considerations

* Application Transparent Transport Layer Security (AT-TLS)

[Chapter 7, “C language application programming,” on page 165| describes the C
language calls that can be used with CICS.

[Chapter 8, “Sockets extended API,” on page 245 provides reference information on
the Sockets Extended API for COBOL, PL/I, and Assembler language. The Sockets
Extended API is the preferred interface for new application development.

Note: [Appendix A, “Original COBOL application programming interface]
[(EZACICAL),” on page 415] provides reference information on the EZACICAL API
for COBOL and assembler language. This interface was made available in a prior
release of TCP/IP Services and is being retained in the current release for
compatibility. For the best results, however, use the Sockets Extended API
whenever possible. It is described in |[Chapter 8, “Sockets extended API,” on page]

Writing CICS TCP/IP applications

[Chapter 1, “Introduction to CICS TCP/IP,” on page 1| describes the basics of
TCP/IP client/server systems and the two types of server: iterative and concurrent.
This topic considers in detail four TCP/IP setups in which CICS TCP/IP
applications are used in various parts of the client/server system.

The setups are:

* The client-listener-child server application set. The concurrent server and child
server processes run under CICS TCP/IP. The concurrent server is the supplied
listener transaction. The client might be running TCP/IP under one of the
various UNIX operating systems such as AIX®.

© Copyright IBM Corp. 2000, 2015 129

130

CICS Sockets

TCP/IP HOST Concurrent
Server
Clients 4“—>
Server
process

* Writing your own concurrent server. This is the same setup as the first except
that a user-written concurrent server is being used instead of the IBM listener.

CICS Sockets
TCP/IP HOST Concurrent
Server
Clients <+——>
Server
process

* The iterative server CICS TCP/IP application. This setup is designed to process
one socket at a time.

CICS Sockets
TCP/IP HOST
. Iterative
Clients |4 > Server

* The client CICS TCP/IP application. In this setup, the CICS application is the
client and the server is the remote TCP/IP process.

z/OS/AIX/Linux
CICS Sockets
Concurrent
_ or
Client < »> lterative
Server

For details of how the CICS TCP/IP calls should be specified, see |Chapter 7, "C|
language application programming,” on page 165 |[Chapter 8, “Sockets extende
API,” on page 245)and|Appendix A, “Original COBOL application programming|
interface (EZACICAL),” on page 415

The client-listener-child-server application set

[Figure 102 on page 131|shows the sequence of CICS commands and socket calls
involved in this setup. CICS commands are prefixed by EXEC CICS; all other
numbered items in the figure are CICS TCP/IP calls.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Concurrent server:

IBM-supplied transaction
CSKL calling program

Client: LISTENER
EZACIC02
Program CLIENT
(11) INITAPI
<—| (12) SOCKET
<—(13) BIND
S| «+—{ (14) LISTEN
O| «—| (15) GETCLEINTID
C| «— (16) SELECTEX
(1) INITAPI » K Child server:
(2) SOCKET - » |E
(3) CONNECT T
S| «—| (17) ACCEPT Transaction SERV
(4) WRITE/SEND 'SERV'——» calling
<—| (18) RECV program SERVER
(19) EXEC CICS INQ 'SERV' S
(20) GIVESOCKET >0
(21) EXEC CICS START 'SERV' >
K (7) EXEC CICS RETRIEVE
E| 4« | (8) TAKESOCKET
(22) SELECT » T
(23) CLOSE » S
(5) READ/WRITE > |S
Ol < (9) READ/WRITE
(6) CLOSE » |C
K| < (10) CLOSE
E
T
S

Figure 102. The sequence of sockets calls

Client call sequence

explains the functions of each of the calls listed in

Table 9. Calls for the client application

Call

Function

(1) INITAPI

Connect the CICS application to the TCP/IP interface. (This call is

used only by applications written in Sockets Extended or the

EZACICAL interface). Use the MAXSOC parameter on the Sockets
Extended INITAPI or the MAX-SOCK parameter on the EZACICAL
interface to specify the maximum number of sockets to be used by

the application.

Chapter 6. Writing applications that use the IP CICS sockets API

131

132

Table 9. Calls for the client application (continued)

Call Function

(2) SOCKET This obtains a socket. You define a socket with three parameters:
* The domain, or addressing family
* The type of socket
¢ The protocol

For CICS TCP/IP, the domain can be only one of the TCP/IP
Internet domains, either AF_INET (2) for IPv4 or AF_INET6 (19) for
IPv6. The type can be SOCK_STREAM (1) for stream sockets (TCP)
or SOCK_DGRAM (2) for datagram sockets (UDP). The protocol can
be either TCP or UDP. Passing 0 for the protocol selects the default
protocol.

If successful, the SOCKET call returns a socket descriptor, S, which
is always a small integer. Notice that the socket obtained is not yet
attached to any local or destination address.

(3) CONNECT Client applications use this to establish a connection with a remote
server. You must define the local socket S to be used in this
connection and the address and port number of the remote socket.
The system supplies the local address, so on successful return from
CONNECT, the socket is completely defined, and is associated with
a TCP connection (if stream) or UDP connection (if datagram).

(4) WRITE This sends the first message to the listener. The message contains
the CICS transaction code as its first 4 bytes of data. You must also
specify the buffer address and length of the data to be sent.

(5) READ/WRITE These calls continue the conversation with the server until it is
complete.
(6) CLOSE This closes a specified socket and so ends the connection. The

socket resources are released for other applications.

Listener call sequence

The listener transaction CSKL is provided as part of CICS TCP/IP. These are the
calls issued by the CICS listener. Your client and server call sequences must be
prepared to work with this sequence. These calls are documented in |”Writing youn
own concurrent server” on page 133 where the listener calls in [Figure 102 on page|
131 are explained.

Child server call sequence
explains the functions of each of the calls listed in [Figure 102 on page 131}

Table 10. Calls for the server application

Call Function
(7) EXEC CICS This retrieves the data passed by the EXEC CICS START command
RETRIEVE in the concurrent server program. This data includes the socket

descriptor and the concurrent server client ID as well as optional
additional data from the client.

(8) TAKESOCKET This acquires the newly created socket from the concurrent server.
The TAKESOCKET parameters must specify the socket descriptor to
be acquired and the client ID of the concurrent server. This
information was obtained by the EXEC CICS RETRIEVE command.
Note: If TAKESOCKET is the first call, it issues an implicit INITAPI
with default values.

(9) READ/WRITE The conversation with the client continues until complete.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 10. Calls for the server application (continued)

Call

Function

(10) CLOSE

Terminates the connection and releases the socket resources when
finished.

Writing your own concurrent server

The overall setup is the same as the first scenario, but your concurrent server
application performs many of the functions performed by the listener. Obviously,
the client and child server applications have the same functions.

Concurrent server call sequence
able 11| explains the functions of each of the steps listed in [Figure 102 on page 131}

Table 11. Calls for the concurrent server application

Call

Function

(11) INITAPI

Connects the application to TCP/TP, as in Table [Table 9 on page 131}

(12) SOCKET

This obtains a socket, as in Table [Table 9 on page 131}

(13) BIND

After a socket has been obtained, a concurrent server uses this call
to attach itself to a specific port at a specific address so that the
clients can connect to it. The socket descriptor and a local address
and port number are passed as arguments.

On successful return of the BIND call, the socket is bound to a port
at the local address, but not (yet) to any remote address.

(14) LISTEN

After binding an address to a socket, a concurrent server uses the
LISTEN call to indicate its readiness to accept connections from
clients. LISTEN tells TCP/IP that all incoming connection requests
should be held in a queue until the concurrent server can deal with
them. The BACKLOG parameter in this call sets the maximum
queue size.

(15) GETCLIENTID

This command returns the identifiers (MVS address space name and
subtask name) by which the concurrent server is known by TCP/IP.
This information is needed by the EXEC CICS START call.

(16) SELECTEX

The SELECTEX call monitors activity on a set of sockets. In this
case, it is used to interrogate the queue (created by the LISTEN call)
for connections. It returns when an incoming CONNECT call is
received or when LCATECB was posted because immediate
termination was detected, or else times out after an interval
specified by one of the SELECTEX parameters.

(17) ACCEPT

The concurrent server uses this call to accept the first incoming
connection request in the queue. ACCEPT obtains a new socket
descriptor with the same properties as the original. The original
socket remains available to accept more connection requests. The
new socket is associated with the client that initiated the connection.

(18) RECV

A RECV is not issued if the FORMAT parameter is ENHANCED
and MSGLENTH is 0. If FORMAT is ENHANCED, MSGLENTH is
not 0, and PEEKDATA is YES, the listener peeks the number of
bytes specified by MSGLENTH. If FORMAT is STANDARD, the
listener processes the client data as in earlier releases.

(19) CICS INQ

This checks that the SERV transaction is defined to CICS (else the
TRANSIDERR exceptional condition is raised), and, if so, that its
status is ENABLED. If either check fails, the listener does not
attempt to start the SERV transaction.

Chapter 6. Writing applications that use the IP CICS sockets API 133

Table 11. Calls for the concurrent server application (continued)

Call Function

(20) GIVESOCKET This makes the socket obtained by the ACCEPT call available to a
child server program.

(21) CICS START This initiates the CICS transaction for the child server application
and passes the ID of the concurrent server, obtained with
GETCLIENTID, to the server. For example, in [“IBM listener output|
[format” on page 143 | the parameters LSTN-NAME and LSTN-SUBNAME
define the listener.

(22) SELECTEX ® Again, the SELECTEX call is used to monitor TCP/IP activity. This
time, SELECTEX returns when the child server issues a
TAKESOCKET call.

(23) CLOSE This releases the new socket to avoid conflicts with the child server.

Passing sockets

In CICS, a socket belongs to a CICS task. Therefore, sockets can be passed between
programs within the same task by passing the descriptor number. However,
passing a socket between CICS tasks does require a GIVESOCKET/TAKESOCKET
sequence of calls.

The iterative server CICS TCP/IP application

[Figure 103 on page 135/ shows the sequence of socket calls involved in a simple
client-iterative server setup.

8. This SELECTEX is the same as the SELECTEX call in Step 16. They are shown as two calls to clarify the functions being
performed.

134

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

lterative server
program
<+— SOCKET
<« BIND
<+ LISTEN
S
O «— SELECT
INITAPl————+—» |C
SOCKET (K
CONNECT —» |E
g « ACCEPT
READ/WRITE——F—»
<+ READ/WRITE
CLOSE ——» <« CLOSE

Figure 103. Sequence of socket calls with an iterative server

The setup with an iterative server is much simpler than the previous cases with
concurrent servers.

Iterative server use of sockets

The iterative server needs to obtain only two socket descriptors. The iterative

server makes the following calls:

1. As with the concurrent servers, SOCKET, BIND, and LISTEN calls are made to
inform TCP/IP that the server is ready for incoming requests, and is listening
on socket 0.

2. The SELECT call then returns when a connection request is received. This
prompts the issuing of an ACCEPT call.

3. The ACCEPT call obtains a new socket (1). Socket 1 is used to handle the
transaction. After this completed, socket 1 closes.

4. Control returns to the SELECT call, which then waits for the next connection
request.

The disadvantage of an iterative server is that it remains blocked for the duration
of a transaction, as described in [Chapter 1, “Introduction to CICS TCP/IP,” on|

The client CICS TCP/IP application

[Figure 104 on page 136 shows the sequence of calls in a CICS client-remote server
setup. The calls are similar to the previous examples.

Chapter 6. Writing applications that use the IP CICS sockets API 135

Remote Server CICS Client
Another operating system z/0S
lterative server TCP/IP TCP/IP CICS address space

implementation for

INITAPI » with socket 2/0S Sockets |Client
interface for CICS

SOCKET > < INITAPI

BIND > < SOCKET

LISTEN > < CONNECT

ACCEPT >

< READ/WRITE
READ/WRITE >
CLOSE > < CLOSE

Figure 104. Sequence of socket calls between a CICS client and a remote iterative server

Figure 104 shows that the server can be on any processor and can run under any
operating system, provided that the combined software-hardware configuration
supports a TCP/IP server.

For simplicity, the figure shows an iterative server. A concurrent server would need
a child server in the remote processor and an adjustment to the calls according to
the model in [Figure 102 on page 131}

A CICS server issues a READ call to read the client’s first message, which contains
the CICS transaction name of the required child server. When the server is in a

non-CICS system, application design must specify how the first message from the
CICS client indicates the service required (in the first message is sent
by a WRITE call).

If the server is a concurrent server, this indication is typically the name of the child

server. If the server is iterative, as in and all client calls require the
same service, this indication might not be necessary.

Defining socket addresses

Socket addresses are defined by specifying the address family and the address of
the socket in the Internet. In CICS TCP/IP, the address is specified by the IP
address and port number of the socket.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Address family (domain) support

CICS TCP/IP supports the AF_INET and AF_INET6 TCP/IP addressing family (or
domain, as it is called in the UNIX system). This is the Internet domain, denoted
by AF_INET or AF_INET6 in C. Many of the socket calls require you to define the
domain as one of their parameters.

A socket address is defined by the IP address of the socket and the port number
allocated to the socket.

IP address allocation

IP addresses are allocated to each TCP/IP services address on a TCP/IP Internet.
Each address is a unique 32-bit (an IPv4 Internet Address) or a unique 128-bit (an
IPv6 Internet Address) quantity defining the host’s network and the particular
host. A host can have more than one IP address if it is connected to more than one
network (a so-called multihomed host).

Port number identification

A host can maintain several TCP/IP connections at one time. One or more
applications using TCP/IP on the same host are identified by a port number. The
port number is an additional qualifier used by the system software to get data to
the correct application. Port numbers are 16-bit integers; some numbers are
reserved for particular applications and are called well-known ports (for example,
23 is for TELNET).

Address structures

The address structure depends on the IP addressing family. An IPv4 socket address
in an IP addressing family is comprised of the following four fields:

Address family
Set to AF_INET in C, or to a decimal 2 in other languages.

Port Port used by the application, in network byte order (which is explained in
[“TCP/IP network byte ordering convention” on page 139).

IPv4 address
The IPv4 address of the network interface used by the application. It is
also in network byte order.

Character array
Should always be set to all zeros.

An IPv6 socket address in an IP addressing family is comprised of the following
five fields:

Address family
Set to AF_INET6 in C or to a decimal 19 in other languages.

Port Port used by the application, in network byte order (which is explained in
[“TCP/IP network byte ordering convention” on page 139).

Flow Information
Four bytes in binary format indicating traffic class and flow label. This
field is currently not implemented.

IPv6 address
The IPv6 address of the network interface used by the application. It is in
network byte order.

Chapter 6. Writing applications that use the IP CICS sockets API 137

Scope ID

Used to specify link scope for an IPv6 address as a interface index. If
specified, and the destination is not link local, the socket call fails.

Address structure for COBOL, PL/l, and assembler language

programs

The address structure of an IPv4 Internet socket address should be defined as
follows:

Parameter Assembler COBOL PL/1

IPv4 NAME

STRUCTURE:

FAMILY H PIC 9(4) BINARY FIXED BIN(15)
PORT H PIC 9(4) BINARY FIXED BIN(15)
ADDRESS F PIC 9(8) BINARY FIXED BIN(31)
ZEROS XLS$ PIC X(8) CHAR(8)

The address structure of an IPv6 Internet socket address should be defined as

follows:

Parameter Assembler COBOL PL/I

IPv6 NAME

STRUCTURE:

FAMILY H PIC 9(4) BINARY FIXED BIN(15)
PORT H PIC 9(4) BINARY FIXED BIN(15)
FLOWINFO F PIC 9(8) BINARY FIXED BIN(31)
ADDRESS XL16 two PIC 9(16) BINARY CHAR(16)
SCOPE ID F PIC 9(8) BINARY FIXED BIN(31)

Address structure for C programs

The structure of an IPv4 Internet socket address is defined by the sockaddr_in
structure, which is found in the IN.H header file. The structure of an IPv6 Internet
socket address structure is defined by the sockaddr_in6 structure, which is found in
the IN.H header file. The format of these structures is shown in [Table 20 on page]

MVS address spaces relationship between TCP/IP and CICS

[Figure 105 on page 139 shows the relationship between TCP/IP and CICS in terms
of MVS address spaces.

138 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

TCP/IP address space

CICS CICSs
region region <4—— Client address spaces
A B of TCP/IP

Figure 105. MVS address spaces

Within each CICS region, server and client processes are allocated subtask
numbers. TCP/IP treats each CICS region together with its application programs as
a client application. Because of this, the address space and subtask of each CICS
TCP/IP application is called its CLIENTID. This applies to CICS TCP/IP servers as
well as to clients.

A single task can support up to 65535 sockets. However, the maximum number of
sockets that the TCP/IP address space can support is determined by the value of
MAXSOCKETS. Therefore, using multiple tasks, a single CICS region can support a
number of sockets up to the setting of MAXSOCKETS, which has a maximum
possible value of 16 777 215.

MAXFILEPROC limits the number of sockets per process. Because CICS is
considered a process, MAXFILEPROC can limit the number of files allocated for
the CICS region. Ensure that MAXFILEPROC is set to accommodate the total
number of sockets used by all tasks running in the region.

The structure of CLIENTID is shown in [Table 12| With CICS TCP/IP, the domain is
always AF_INET, so the name (that is, address space) and subtask are the items of
interest.

Table 12. CLIENTID structures

C structure COBOL structure
struct clientid { CLIENTID STRUCTURE:
int domain; 01 CLIENTID.
char name[8]; 02 DOMAIN PIC 9(8) BINARY.
char subtaskname[8] ; 02 NAME PIC X(8).
char reserved[20]; 02 TASK PIC X(8).
}s 02 RESERVED PIC X(20).

TCP/IP network byte ordering convention

Ports and addresses are specified using the TCP/IP network byte ordering
convention, which is known as big endian.

In a big endian system, the most significant byte comes first. By contrast, in a little
endian system, the least significant byte comes first. MVS uses the big endian
convention; because this is the same as the network convention, CICS TCP/IP
applications do not need to use any conversion routines, such as htonl, htons,
ntohl, and ntohs.

Chapter 6. Writing applications that use the IP CICS sockets API 139

Note: The socket interface does not handle differences in data byte ordering within
application data. Sockets application writers must handle these differences
themselves.

GETCLIENTID, GIVESOCKET, and TAKESOCKET

(with clientid CLIENTID-L) ¢——

The socket calls GETCLIENTID, GIVESOCKET, and TAKESOCKET are unique to
the IBM implementation of the socket interface. In CICS TCP/IP, they are used
with the EXEC CICS START and EXEC CICS RETRIEVE commands to make a

socket available to a new process. This is shown in

Listener

1. Call GETCLIENTID
-returns CLIENTID-L <

2. Call GIVESOCKET
-specifies CLIENTID-CS <«

3. Call EXEC CICS START Child server
-specifies CLIENTID-L < — (with clientid CLIENTID-CS)

4. Call EXEC CICS RETRIEVE
» returns CLIENTID-L in the
INTO parameter

5. Call TAKESOCKET
» specifies CLIENTID-L

Figure 106. Transfer of CLIENTID information

140

shows the calls used to make a listener socket available to a child server
process. It shows the following steps:

1. The listener calls GETCLIENTID. This returns the listener’s own CLIENTID
(CLIENTID-L), which comprises the MVS address space name and subtask
identifier of the listener. The listener transaction needs access to its own
CLIENTID for step

2. The listener calls GIVESOCKET, specifying a socket descriptor and the
CLIENTID of the child server.

If the listener and child server processes are in the same CICS region (and so in
the same address space), the MVS address space identifier in CLIENTID can be
set to blanks. This means that the listener’s address space is also the child’s
address space.

If the listener and child server processes are in different CICS regions, enter the
new address space and subtask.

In the CLIENTID structure, the supplied listener sets the address space name and
subtask identifier to blanks. This makes the socket available to a TAKESOCKET
command from any task in the same MVS image, but only the child server
receives the socket descriptor number, so the exposure is minimal. For total
integrity, the subtask identifier of the child server should be entered.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

3. The listener performs an EXEC CICS START. In the FROM parameter, the
CLIENTID-L, obtained by the previous GETCLIENTID, is specified. The listener
is telling the new child server where to retrieve its socket from in step

4. The child server performs an EXEC CICS RETRIEVE. In the INTO parameter,
CLIENTID-L is retrieved.

5. The child server calls TAKESOCKET, specifying CLIENTID-L as the process from
which it wants to take a socket.

CICS application transaction (IBM listener)

In a CICS system based on SNA terminals, the CICS terminal management
modules perform the functions of a concurrent server. Because the TCP/IP
interface does not use CICS terminal management, CICS TCP/IP provides these
functions in the form of a CICS application transaction, the listener. The CICS
transaction ID of the IBM distributed listener is CSKL. This transaction is defined
at installation to execute the EZACICO02 program and is to be further referenced as
the listener. This transaction ID can be configured to a transaction ID suitable for
the user's requirements through the use of the EZACICD macro or the EZAC CICS
transaction and the accompanying RDO transaction definition.

The listener performs the following functions:

* It issues appropriate TCP/IP calls to listen on the port specified in the
configuration file and waits for incoming connection requests issued by clients.
The port number must be reserved in the hlg. TCPIP.PROFILE to the CICS region
using the TCP/IP CICS sockets interface.

* When an incoming connection request arrives, the listener accepts it and obtains
a new socket to pass to the CICS child server application program.

* The standard listener starts the CICS child server transaction based on
information in the first message on the new connection. The format of this
information is given in ['IBM listener input format” on page 142.|For the
enhanced listener, it starts the CICS child server transaction based on
information in the TCP/IP CICS configuration file, EZACONFG.

e It waits for the child server transaction to take the new socket and then issues
the close call. When this occurs, the receiving application assumes ownership of
the socket and the listener has no more interest in it.

The listener program is written so that some of this activity goes on in parallel. For
example, while the program is waiting for a new server to accept a new socket, it
listens for more incoming connections. The program can be in the process of
starting 49 child servers simultaneously. The starting process begins when the
listener accepts the connection and ends when the listener closes the socket it has
given to the child server.

able 13|illustrates the listener configuration in contrast with the connected clients
address family and indicates the contents of the IPv4 and IPv6 IP address fields
presented to the security or transaction exit.

Table 13. Listener configuration presented to security or transaction exit

Exits Exits Exits Exits
Exits client's client's listener's listener's
Listeners AF | Connected |address IPv4 IPv6 IPv4 IPv6
configuration | client's AF | family address address address address
not specified | AF_INET |AF_INET |IPv4 addr |zeros IPv4 addr | zeros

Chapter 6. Writing applications that use the IP CICS sockets API 141

Table 13. Listener configuration presented to security or transaction exit (continued)

Exits Exits Exits Exits
Exits client's client's listener's listener's
Listeners AF | Connected |address IPv4 IPv6 IPv4 IPv6
configuration | client's AF | family address address address address
AF_INET AF_INET AF_INET IPv4 addr |zeros IPv4 addr |zeros
1Pv4 IPv4
mapped mapped
AF_INET6 AF_INET AF_INET6 | zeros IPv6 addr |zeros IPv6 addr
AF_INET6 AF_INET6 | AF_INET6 |zeros IPv6 addr |zeros IPv6 addr

IBM listener input format

The standard listener requires the following input format from the client in its first
transmission. The client should then wait for a response before sending any
subsequent transmissions. Input can be in uppercase or lowercase. The commas are

required.

Note: Because the listener cannot distinguish between a comma used as a

delimiter in the listener's initial message and a comma that is part of the

client-in-data format, the client-in-data format should not contain a comma. In text
such as x2C" in ASCII data or such as '6B' in EBCDIC data, the single quote can be

interpreted as a comma.

»>—tran

v
A

tran

’f,kc—l_tl—

I—cl ient- in-data—|

,ic,—hhmmss—

,td
LI

s

The CICS transaction ID (in uppercase) that the listener is going to start. This
field can be one to four characters.

client-in-data
Optional. Application data, used by the optional security exit * or the server
transaction. The maximum length of this field is a 40-byte character (35 bytes,
plus 1 byte filler and 4 bytes for startup type).

/ic/td/kc

Optional. The startup type that can be either KC for CICS task control, IC for
CICS interval control or TD for CICS transient data. These can also be entered
in lowercase (kc,ic, or td). If this field is left blank, startup is immediate
using CICS task control (KC). KC or kc can be specified to indicate that the child
server task is started using EXEC CICS START with no delay interval. This is
the same as specifying 1C,000000.

hhmmss

Optional. Hours, minutes, and seconds for interval time if the transaction is
started using interval control. All six digits must be given.

9. See [“Writing your own security or transaction link modules for the listener” on page 152

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Note: TD ignores the timefield.

Examples of client input and the listener processing

The following are examples of client input and the listener processing that results
from them. The data fields referenced can be found in [“IBM listener output]

77/

fformat.}

Note: Parameters are separated by commas.

Example Listener response

TRN1,userdataishere It starts the CICS transaction TRN1 using task control, and
passes to it the data userdataishere in the field
CLIENT-IN-DATA.

TRN2,,1IC,000003 It starts the CICS transaction TRN2 using interval control,

without user data. There is a 3-second delay between the
initiation request from the listener and the transaction
startup in CICS.

TRN3,userdataishere,TD

It writes a message to the transient data queue named TRN3
in the format described by the structure
TCPSOCKET-PARM, described in[‘IBM listener output]

The data contained in userdataishere is passed to
the field CLIENT-IN-DATA. This queue must be an
intrapartition queue with trigger-level set to 1. It causes the
initiation of transaction TRNS3 if it is not already active. This
transaction should be written to read the transient data
queue and process requests until the queue is empty.

This mechanism is provided for those server transactions
that are used very frequently and for which the overhead of
initiating a separate CICS transaction for each server request
could be a performance concern.

TRN3,,TD It causes data to be placed on transient data queue TRN3,
which in turn causes the start or continued processing of the
CICS transaction TRN3, as described in the TRN3 previous
example. There is no user data passed.

TRN4 It starts the CICS transaction TRN4 using task control. There

is no user data passed to the new transaction.

IBM listener output format

There are two different formats for the listener output; one for child server tasks
started through a standard listener and one for child server tasks started through

the enhanced listener.

Guidelines: The listener output format now supports an IPv6 socket address
structure for both the standard and the enhanced listener. The size of the standard
listener output format has increased. Child server programs should consider the

following:

* A child server transaction program, using the EXEC CICS RETRIEVE function to
get the data passed to it by the listener, should expand the storage it has
allocated to contain the IPv6 socket address structure. The LENGTH specified on
the EXEC CICS RETRIEVE function should reflect the amount of storage
allocated to contain the listener output format. The LENGERR flag is raised if
the LENGTH is smaller than the amount of data sent. Coding a HANDLE
condition allows you to contain this.

Chapter 6. Writing applications that use the IP CICS sockets API 143

144

* A child server transaction program, using the EXEC CICS READQ TD function
to get the data placed on a CICS Transient Data Queue by the listener, should
expand the storage it has allocated to contain the IPv6 socket address structure.
The LENGTH specified on the EXEC CICS READQ TD function should reflect
the amount of storage allocated to contain the listener output format.

shows the format of the listener output data area passed to the child

server through a standard listener.

Table 14. Listener output format - Standard listener

Description Offset Format

Value

Socket descriptor |0 Fullword binary
being given to
the child subtask

Socket number to be specified on
the TAKESOCKET command by
the child subtask

MVS address +4 8-byte character |Name of the listener’s address

space identifier space

TCP/IP task +12 8-byte character |The listener’s task identifier

identifier

Data area +20 35-byte character |Either the CLIENT-IN-DATA from
the listener (if FORMAT is
STANDARD) or the first 35 bytes
data that was read by the listener
(if FORMAT is ENHANCED)

OTE +55 1-byte character |Indicates that the IP CICS socket
interface is using CICS Open
Transaction Environment.
1 Using OTE
0 Using MVS subtasks

Filler +55 1-byte character | Unused byte for fullword
alignment

Socket address +56 28 bytes

structure

Addressing +56 Halfword binary |Is 2 to indicate AF_INET or 19 to

family indicate AF_INET6

IPv4 portion of | +58 26 bytes See the next three fields

the socket

address structure

Port number +58 Halfword binary |The client's port number
32-bit IPv4 +60 Fullword binary |The IPv4 address of the client's
address host
Unused portion | +64 8 bytes Reserved
+72 12 bytes For alignment with the IPv6 socket
address structure
IPv6 portion of +58 26 bytes See the next four fields
the socket

address structure

Port number +58 Halfword binary |The client's port number

Flow Information | +60 Fullword binary |Indicates traffic class and flow
label

128-bit IPv6 +64 16 bytes The IPv6 address of the client's

address host

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 14. Listener output format - Standard listener (continued)

Description Offset Format Value
Scope ID +80 Fullword binary |Indicates link scope
Reserved +84 17 fullwords Reserved for future use

For a standard listener, the following COBOL definition is used:

01 TCPSOCKET-PARM.

05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

05 LSTN-NAME PIC X(8).
05 LSTN-SUBNAME PIC X(8).
05 CLIENT-IN-DATA PIC X(35).
05 OTE PIC X(1).

05 SOCKADDR-IN-PARM.

10 SOCK-SIN REDEFINES SOCK-DATA.

15 SOCK-SIN-PORT
15 SOCK-SIN-ADDR
15 FILLER
15 FILLER

PIC
PIC
PIC
PIC

10 SOCK-SIN6 REDEFINES SOCK-DATA.

15 SOCK-SIN6-PORT
15 SOCK-SIN6-FLOWINFO
15 SOCK-SIN6-ADDR.
20 FILLER
20 FILLER
15 SOCK-SIN6-SCOPEID
05 FILLER

PIC
PIC

PIC
PIC
PIC
PIC

9(4) BINARY.
9(8) BINARY.
X(8).
X(12).

9(4) BINARY.
9(8) BINARY.

9(16) BINARY.
9(16) BINARY.
9(8) BINARY.
X(68).

Figure 107. Example of COBOL layout of the listener output format - Standard listener

Chapter 6. Writing applications that use the IP CICS sockets API

145

DCL 1 TCPSOCKET_PARM,

Figure 108. Example of PL/I layout of the listener output format - Standard listener with an IPv4 socket address

2

RPN NN

structure

GIVE_TAKE_SOCKET
LSTN_NAME
LSTN_SUBNAME
CLIENT_IN_DATA
0TE

FILLER 1
SOCK_FAMILY
SOCK_SIN_PORT
SOCK_SIN_ADDR
SOCK_SIN_RESERVED
SOCK_SIN_FILLER
FILLER 68

DCL 1 TCPSOCKET_PARM,

Figure 109. Example of PL/I layout of the listener output format - Standard listener with an IPv6 socket address

2
2
2
2
2
2
2
2
2
2
2
structure
146

GIVE_TAKE_SOCKET
LSTN_NAME
LSTN_SUBNAME
CLIENT_IN_DATA

0TE

SOCK_FAMILY
SOCK_SIN6_PORT
SOCK_SIN6_FLOWINFO
SOCK_SIN6_ADDR
SOCK_SIN6_SCOPEID
FILLER 68

FIXED BIN(31),
CHAR(8) ,
CHAR(8),
CHAR(35),
CHAR(1),
CHAR(1),

FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(31),
CHAR(8),
CHAR(12),
CHAR(68) ;

FIXED BIN(31),
CHAR(8) ,
CHAR(8) ,
CHAR(35),
CHAR(1),

FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(31),
CHAR(16),
FIXED BIN(31),
CHAR(68) ;

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

TCPSOCKET_PARM DS 0C
GIVE_TAKE_SOCKET DS F
LSTN_NAME DS CL8
LSTN_SUBNAME DS CL8
CLIENT_IN_DATA DS CL35
0TE DS CLI
SOCKADDR DS OF
SOCK_FAMILY DS H
SOCK_DATA DS 0C
SOCKFLEN EQU *-SOCKADDR

ORG ~ SOCK_DATA
SOCK_SIN DS 0C
SOCK_SIN_PORT DS H
SOCK_SIN_ADDR DS CL4

DS CL8

DS 20F
SOCK_SIN#LEN EQU *-SOCK_SIN

ORG SOCK DATA

SOCK_SIN6 DS 0C
SOCK_SIN6_PORT DS H
SOCK_SIN6_FLOWINFO DS CL4
SOCK_SIN6_ADDR DS CL16
SOCK_SIN6_SCOPE_ID DS CL4
SOCK_SING6#LEN EQU *-SOCK_SIN6

ORG

DS CL68

Figure 110. Example of Assembler layout of the listener output format - Standard listener supporting both an IPv4 and
an IPv6 socket address structure

Chapter 6. Writing applications that use the IP CICS sockets API 147

struct sock_tim {
unsigned Tong
char

char

char

char

union {

give_take_socket;
1isten_name[8];
Tisten_taskid[8];

client_in_data[35];

ote[1];

struct sockaddr_in sin;

struct sockaddr_in6 sin6;

} sockaddr_in_parm;

char

}

reserved2[68];

Figure 111. Example of C structure of the listener output format - Standard listener supporting both an IPv4 and an
IPv6 socket address structure

148 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

able 15| shows the format of the listener output data area passed to the child
server through the enhanced listener.

Note: With the enhanced listener, no CLIENT-IN-DATA is extracted from the initial
client data. The child server program must either read the initial client data itself
(if PEEKDATA is YES) or obtain it from DATA-AREA-2 (if PEEKDATA is NO). If a
listener is converted from a standard listener to an enhanced listener, its
corresponding child server applications must be changed to handle the larger
transaction initial message (TIM) by specifying a large enough length on the EXEC
CICS RETRIEVE command or on the EXEC CICS READQ TD command.
Otherwise, the command fails with a LENGERR response and the child server task

could abend.

Table 15. Listener output format - Enhanced listener

Description Offset Format Value

Socket descriptor |0 Fullword binary |Socket number to be specified on

being given to the TAKESOCKET command by

the child subtask the child subtask

MVS address +4 8-byte character |Name of the listener’s address

space identifier space

TCP/IP task +12 8-byte character |The listener’s task identifier

identifier

Data area +20 35-byte character |Either the CLIENT-IN-DATA from
listener (if FORMAT is
STANDARD) or the first 35 bytes
of data read by the listener (if
FORMAT is ENHANCED)

OTE +55 1-byte character |Indicates that the IP CICS socket
interface is using CICS's Open
Transaction Environment.
1 Using OTE
0 Using MVS subtasks

Socket address +56 28 bytes

structure

Addressing +56 Halfword binary |Is 2 to indicate AF_INET or 19 to

family indicate AF_INET6

IPv4 portion of | +58 26 bytes See the next three fields

the socket
address structure

Table 15. Listener output format - Enhanced listener (continued)

Description Offset Format Value

Port number +58 Halfword binary |The client's port number

32-bit IPv4 +60 Fullword binary |The IPv4 address of the client's

address host

Unused portion | +64 8 bytes Reserved

+72 12 bytes For alignment with the IPv6 socket

address structure

IPv6 portion of | +58 26 bytes See the next four fields

the socket

address structure

Port number +58 Halfword binary |The client's port number

Flow Information | +60 Fullword binary |Indicates traffic class and flow
label

128-bit IPv6 +64 16 bytes The IPv6 address of the client's

address host

Scope ID +80 Fullword binary |Indicates link scope

Reserved +84 17 fullwords Reserved for future use

Data length +152 Halfword binary |The length of the data received
from the client. If the PEEKDATA
option was configured, Data length
is zero with no data in Data area-2.

Data area - 2 +154 Length The data received from the client

determined by
the previous field

starting at position 1

For the enhanced listener, the following COBOL definition is used:

Chapter 6. Writing applications that use the IP CICS sockets API 149

01 TCPSOCKET-PARM.

05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

05 LSTN-NAME PIC X(8).
05 LSTN-SUBNAME PIC X(8).
05 CLIENT-IN-DATA PIC X(35).
05 OTE PIC X(1).
05 SOCKADDR-IN-PARM.
10 SOCK-FAMILY PIC 9(4) BINARY
10 SOCK-DATA PIC x(26)
10 SOCK-SIN REDEFINES SOCK-DATA.
15 SOCK-SIN-PORT PIC 9(4) BINARY.
15 SOCK-SIN-ADDR PIC 9(8) BINARY.
15 FILLER PIC X(8).
15 FILLER PIC X(12).
10 SOCK-SIN6 REDEFINES SOCK-DATA.
15 SOCK-SING-PORT PIC 9(4) BINARY.
15 SOCK-SING-FLOWINFO PIC 9(8) BINARY.
15 SOCK-SIN6-ADDR.
20 FILLER PIC 9(16) BINARY.
20 FILLER PIC 9(16) BINARY.
15 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
05 FILLER PIC X(68).
05 CLIENT-IN-DATA-LENGTH PIC 9(4) BINARY.
05 CLIENT-IN-DATA-2 PIC X(xxx).

Figure 112. Example of COBOL layout of the listener output format - Enhanced listener

The value of xxx is at least equal to the largest MSGLENgth parameter for the
listeners that can start this application.

DCL 1 TCPSOCKET_PARM,

2 GIVE_TAKE_SOCKET FIXED BIN(31),

CLIENT_IN_DATA_LENGTH
CLIENT_IN_DATA 2

FIXED BIN(15),
CHAR(xxx) 3

2 LSTN_NAME CHAR(8),

2 LSTN_SUBNAME CHAR(8),

2 CLIENT IN_DATA CHAR(35),

2 OTE CHAR(1),

2 SOCK_FAMILY FIXED BIN(15),
2 SOCK_SIN_PORT FIXED BIN(15),
2 SOCK_SIN_ADDR FIXED BIN(31),
2 SOCK_SIN_RESERVED CHAR(8),

2 SOCK_SIN FILLER CHAR(12),

2 FILLER 68 CHAR(68),

2

2

Figure 113. Example of PL/I layout of the listener output format - Enhanced listener with an IPv4 socket address
structure

The value of xxx is at least equal to the largest MSGLENgth parameter for the
listeners that can start this application.

150 2z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

DCL 1 TCPSOCKE
2 GIVE_T
LSTN_N
LSTN_S
CLIENT
0TE
SOCK_F
SOCK_S

SOCK_S

FILLER

PPN MNP NN NN NN

CLIENT

Figure 114. Example of PL/I layout of the listener output format - Enhanced listener with an IPv6 socket address

structure

TCPSOCKET _PARM
GIVE_TAKE_SOCKE
LSTN_NAME DS
LSTN_SUBNAME DS
CLIENT_IN_DATA
0TE DS
SOCKADDR DS
SOCK_FAMILY DS
SOCK_DATA DS
SOCK#LEN EQU

ORG
SOCK_SIN DS
SOCK_SIN_PORT D
SOCK_SIN_ADDR D

DS

DS

SOCK_SIN#LEN EQU *-SOCK_SIN

ORG
SOCK_SIN6 DS 0C
SOCK_SIN6_PORT
SOCK_SIN6_FLOMWI
SOCK_SIN6_ADDR
SOCK_SIN6_SCOPE

SOCK_SIN6#LEN EQU *-SOCK_SING

ORG
DS

CLIENT_IN_DATA_LENGTH DS H
CLIENT_IN DATA_

T_PARM,
AKE_SOCKET
AME

UBNAME

_IN_DATA

AMILY
IN6_PORT

SOCK_SIN6_FLOWINFO

IN6_ADDR

SOCK_SIN6_SCOPEID
68

CLIENT_IN_DATA_LENGTH
TIN_DATA 2

The value of xxx is at least equal to the largest MSGLENgth parameter for the
listeners that can start this application.

DS 0C
T DS F

cL8

cL8

DS CL35
cLl

oF

H

oc
%-SOCKADDR
SOCK_DATA
oc

S H

S CL4

cL8

20F

SOCK_DATA
DS H

NFO DS CL4
DS CL16
_ID DS CL4
CL68

2 DS oCL

FIXED BIN(31),
CHAR(8),
CHAR(8),
CHAR(35),
CHAR(1),

FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(31),
CHAR(16),
FIXED BIN(31),
CHAR(68),
FIXED BIN(15),
CHAR (xxx) 3

Figure 115. Example of assembler layout of the listener output format - Enhanced listener supporting both an IPv4 and

an IPv6 socket address structure

Chapter 6. Writing applications that use the IP CICS sockets API

151

struct sock_tim {

}

unsigned Tong
char
char
char
char

union {

give_take_socket;
Tisten_name[8];
Tisten_taskid[8];
client_in_data[35];
ote[1];

struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} sockaddr_in_parm;

char

short

char

reserved2[68] ;
client_in_data_Tlength;
client_in_data_2[xxx];

Figure 116. Example of C structure of the listener output format - Enhanced listener supporting both an IPv4 and an
IPv6 socket address structure

152

The value of xxx is at least equal to the largest MSGLENgth parameter for the
listeners that can start this application.

Writing your own security or transaction link modules for the
listener

The listener process provides an exit point for those users who want to write and
include a module that performs the following;:

* Check to indicate whether the expanded security or transaction input format is
used

e Security check before a CICS transaction is initiated

The exit point is implemented so that if a module is not provided, all valid
transactions are initiated.

If you write a security or transaction module, you can name it anything you want,
as long as you define it in the configuration data set. In previous releases, you
needed to name the module EZACICSE; you can still use that module name. You
can write this program in COBOL, PL/I, or assembler language, and you must
provide an appropriate CICS program definition.

Note: Specify the name of the security or transaction module in the SECEXIT field
in Alter or Define. If you do not name the module, CICS assumes you do not have
this module. See [Figure 63 on page 83| for more information about this process.

Just before the child server task creation process, the listener invokes the security
or transaction module by a conditional CICS LINK passing a COMMAREA. The
listener passes a data area to the module that contains information for the module
to use for security checking and a 1-byte switch. Your security or transaction
module should perform a security check and set the switch accordingly. Included
in this data is the OTE indicator which indicates when the IP CICS socket interface
is using CICS's open transaction environment. The security exit should follow
threadsafe programming practices to ensure that CICS continues to execute the
listener on an open API TCB.

When the security or transaction module returns, the listener checks the state of
the switch and initiates the transaction if the switch indicates security clearance.
The module can perform any function that is valid in the CICS environment.
Excessive processing, however, could cause performance degradation.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

A field is supplied to indicate if the expanded security or transaction input format
is used. If used, fields also exist for the listener's IP address and port number, a
data length field, and a second data area (up to MSGLENTH in length).
shows the data area used by the security or transaction module.

Table 16. security or transaction exit data

Description

Offset

Format

Value

CICS transaction
identifier

0

4-byte character

CICS transaction requested by
the client or supplied by the
CSTRANID parameter.

Data area

+4

35-byte character

If the FORMAT parameter value
is STANDARD, then this
contains the 35-byte application
data that was extracted from the
client's initial data. Otherwise, it
contains up to the first 35 bytes
of data sent by the client (The
MSGLENTH value determines
the limit).

security or
transaction exit data
level

+39

1-byte character

Indicates whether or not this
data area is in the expanded
format:

1 Expanded format (the
area in green is
included)

0 Not expanded (the area
in green is not
included)

OTE indicator

+40

1-byte character

Indicates whether the IP CICS
socket interface is using CICS's
open transaction environment.

1 Using OTE
0 Using MVS subtasks

TTLS indicator

+41

1-byte character

Indicates whether this
connection is secured using
AT-TLS.

1 This connection is
secured using AT-TLS

0 This connection is not
secured using AT-TLS

Register Application
Data

+42

1-byte character

Indicates that application data is
registered against the accepted
connection to be given. This flag
has the value 1 when either the
LAPPLD value is yes or the
LAPPLD parameter inherited the
APPLDAT=YES specification.

1 Application data is
registered

0 Application data is not
registered

Reserved

+43

1-byte character

Reserved for IBM use.

Chapter 6. Writing applications that use the IP CICS sockets API 153

154

Table 16. security or transaction exit data (continued)

Description

Offset

Format

Value

Action

+44

2-byte character

Method of starting the task:
IC Interval control
KC Task control

TD Transient data

Interval control time

+46

6-byte character

Interval requested for IC start.
Has the form hhmmss.

Address family

+52

Halfword binary

Network address family. The
value contains a 2 to indicate
AF_INET and a 19 to indicate
AF_INETS6.

Client's port

+54

Halfword binary

The number of the requestor's
port.

Client's IPv4 address

+56

Fullword binary

The IPv4 address of the
requestor's host.

Switch

+60

1-byte character

1 Permit the transaction

Not 1 Prohibit the transaction

Switch-2

+61

1-byte character

1 Listener sends message
to the client

Not 1 security or transaction
exit sends message to

client

Terminal
identification

+62

4-byte character

Return binary zeroes if no
terminal is to be associated with
the new task. Otherwise, return
the CICS terminal ID to be
associated with the new task.

Socket descriptor

+66

Halfword binary

Current socket descriptor.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 16. security or transaction exit data (continued)

Description Offset Format Value

User ID +68 8-byte character A user ID can be returned so
that it is associated with the new
task. This is mutually exclusive
from terminal ID.

e If the GETTID value is YES in
the listener definition and the
listener is able to obtain the
user ID that is associated with
the connection client's
certificate, then this field is
initialized using that user ID.
Otherwise, it is initialized as
binary zeroes. The security
exit can use that user ID to
identify the client.

 If the security exit permits
the transaction and does not
overwrite this field, then the
child server task inherits this
user ID (unless the start type
is TD).

¢ If the security exit overwrites
this field with nulls or blanks,
then the child server inherits
the listener task's user ID
(unless the start type is TD).

¢ If the security exit overwrites
this field with another user
ID, then the child server task
inherits that user ID (unless
the start type is TD). The user
ID under which the listener
executes must have RACF
surrogate authority to use any
user ID that can be specified
by this field.

See the|z/OS Security Server|
RACF Security Administrator's|
% for details.

Listener's IPv4 +76 Fullword binary The local IPv4 address

address associated with this new TCP/IP
connection.

Listener's port +80 Halfword binary The listener's port number.

Listener's IPv6 +82 16 bytes binary The local IPv6 address

address associated with this new TCP/IP
connection.

Listener's scope 1D +98 Fullword binary The scope ID of the listener's
IPv6 address.

Client's IPv6 address |+102 16 bytes binary The IPv6 address of the

requestor's host.

Client's scope 1D +118 Fullword binary The scope ID of the listener's
IPv6 address.

Chapter 6. Writing applications that use the IP CICS sockets API 155

Table 16. security or transaction exit data (continued)

Description Offset Format Value

Client's certificate +122 Halfword binary Indicates whether the client's
length certificate exists.

Client's certificate +124 Fullword binary The address of the client's
address certificate.

Reserved +128 34 bytes Reserved for future use.

Data length +162 Halfword binary The length of the data received

from the client.

Data area - 2 +164 Length determined | The data received from the client
by the previous field |starting at position 1. If this is
the enhanced listener, the first 35
bytes are the same as Data
Area-1.

Note:
1. The security/user exit can change the value of the following fields:
* CICS transaction identifier
e Data area
e Action
* Register Application Data
* Interval control time
* Address family
* Client's port
* Client's IPv4 address
* Switch
* Terminal identification (output only)
e User ID
* Client's IPv6 address
* Client's Scope ID
* Data length
e Data area -2

2. Although the security exit can alter the contents of the Data area, Data length, and Data
area -2 fields when PEEK=YES, the changed values are not reflected to the child server
in the listener input data. The child server must read the data itself if the listener is
configured with PEEK=YES.

Use the EZACICSX assembler macro contained in the hlg.SEZACMAC dataset to
format the security /user exit COMMAREA pass by the listener.

Threadsafe considerations for IP CICS sockets applications

This topic describes how to enable IP CICS sockets applications to exploit the
Open Transaction Environment (OTE) through threadsafe programming.

The IP CICS socket interface includes the IP CICS sockets task-related user exit,
EZACICO01, which is invoked when an application program makes an EZASOKET
request. This includes the following programs:

* EZASOKET
* EZACICSO
« EZACICAL

156 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* using any of the IP CICS C sockets functions that are provided through
EZACIC17 (Programs using IP CICS sockets functions that are provided though
EZACICO07 are not considered threadsafe due to not being re-entrant.)

The IP CICS socket interface manages the process of transferring to TCP/IP and
returning control to the application program when EZASOKET processing is
complete.

When the IP CICS sockets configuration option is specified as OTE=NO, then the
IP CICS sockets task-related user exit operates as a quasi-reentrant task-related
user exit program. It runs on the CICS main TCB (the QR TCB) and uses its own
MVS subtask TCB to process the EZASOKET request. However, when the IP CICS
sockets configuration option is specified as OTE=YES, then the IP CICS socket
interface exploits the Open Transaction Environment (OTE) to enable the IP CICS
sockets task-related user exit to invoke and return from TCP/IP without switching
TCBs. In the OTE, the IP CICS sockets task-related user exit operates as a
threadsafe and open API task-related user exit program; it is automatically enabled
using the OPENAPI option on the ENABLE PROGRAM command during
connection processing. This enables it to receive control on an open L8 mode TCB.

In the OTE, if the user application program that invoked the task-related user exit
conforms to threadsafe coding conventions and is defined to CICS as threadsafe, it
can also run on the L8 TCB. Before its first EZASOKET request, the application
program runs on the CICS main TCB, the QR TCB. When it makes an EZASOKET
request and invokes the task-related user exit, control passes to the L8 TCB, and IP
CICS sockets processing is carried out. On return from TCP/IP, if the application
program is threadsafe, it continues to run on the L8 TCB.

When the correct conditions are met, the use of open TCBs for IP CICS sockets
applications decreases usage of the QR TCB, and avoids TCB switching. An ideal
IP CICS sockets application program for the open transaction environment is a
threadsafe program, containing only threadsafe EXEC CICS commands, and using
only threadsafe user exit programs. An application like this moves to an L8 TCB
when it makes its first EZASOKET request, and then continues to run on an L8
TCB through any amount of IP CICS sockets requests and application code,
requiring no TCB switching. This situation produces a significant performance
improvement where an application program issues multiple EZASOKET calls. The
gains are also significant when making a DB2 request because the DB2 task-related
user exit also operates as threadsafe and exploits the open transaction
environment. If the application program does not issue many EZASOKET calls, the
performance benefits might not be as significant.

If the execution of a user application involves any actions that are not threadsafe,
CICS switches back to the QR TCB. Such actions are non-threadsafe CICS requests
issued by the program, the use of non-threadsafe task-related user exits, and the
involvement of non-threadsafe global user exits. Switching back and forth between
the open TCB and the QR TCB is detrimental to the application's performance.

Requirements: In order to gain the performance benefits of the OTE for IP CICS
sockets applications, you must meet the following conditions:

 IP CICS sockets must be configured to use the Open Transaction Environment
with the OTE=YES configuration option.

* The system initialization parameter FORCEQR must be set to NO. FORCEQR
forces programs defined as threadsafe to run on the QR TCB; it can be set to
YES as a temporary measure while problems connected with threadsafe-defined

Chapter 6. Writing applications that use the IP CICS sockets API 157

158

programs are investigated and resolved. FORCEQR applies to all programs
defined as threadsafe that are not invoked as task-related user exits, global user
exits, or user-replaceable modules.

* The IP CICS sockets application must have threadsafe application logic (that is,
the native language code in between the EXEC CICS commands must be
threadsafe), use only threadsafe EXEC CICS commands, and be defined to CICS
as threadsafe. Only code that has been identified as threadsafe is permitted to
execute on open TCBs. If your IP CICS sockets application is not defined as
threadsafe, or if it uses EXEC CICS commands that are not threadsafe, TCB
switching occurs and some or all of the performance benefits of OTE
exploitation are lost. If your IP CICS sockets application is defined as threadsafe
and it contains non-threadsafe code between the EXEC CICS commands,
unpredictable results can occur.

* Any global user exits on the execution path used by the application must be
coded to threadsafe standards and defined to CICS as threadsafe.

* Any other task-related user exits used by the application must be defined to
CICS as threadsafe or enabled as OPENAPL

See |http:/ /www-01.ibm.com /software /htp /cics /library /| for information about
how to make application programs and user exit programs threadsafe. By defining
a program to CICS as threadsafe, you are specifying that only the application logic
is threadsafe, not that all the EXEC CICS commands included in the program are
threadsafe. CICS can ensure that EXEC CICS commands are processed safely by
switching to the QR TCB for those commands not yet converted that must be
quasi-reentrant. To permit your program to run on an open TCB, CICS requires
you to verify that your application logic is threadsafe.

See |http: / /www-01.ibm.com /software /htp/cics/library /| for more information
about the EXEC CICS commands that are threadsafe and do not involve TCB
switching.

If a user application program in the open transaction environment is not
threadsafe, the IP CICS sockets task-related user exit still runs on an L8 TCB, but
the application program runs on the QR TCB throughout the task. Every time the
program makes an EZASOKET request, CICS switches from the QR TCB to the L8
TCB and back again, so the performance benefits of the open transaction
environment are negated.

shows what happens when application programs with different
concurrency attributes invoke the IP CICS sockets task-related user exit.

Table 17. Different concurrency attributes for IP CICS sockets task-related user exits

Program's concurrency IP CICS sockets task-related

attribute user exit's operation Effect
QUASIRENT or Quasi-reentrant when Application program and
THREADSAFE OTE=NO task-related user exit run

under the CICS QR TCB. The
task-related user exit
manages its own TCBs,
switching to and from them
for each EZASOKET request.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

Table 17. Different concurrency attributes for IP CICS sockets task-related user
exits (continued)

Program's concurrency IP CICS sockets task-related
attribute user exit's operation Effect
QUASIRENT Threadsafe and open API Application program runs
(when OTE=YES) under the CICS QR TCB.
Task-related user exit runs
under an L8 TCB, and
EZASOKET calls are
executed under the L8 TCB.
CICS switches to and from
the CICS QR and the L8 TCB
for each EZASOKET call.
THREADSAFE Threadsafe and open API OTE exploitation.
(when OTE=YES) Task-related user exit runs

under an open API, L8 TCB,
and EZASOKET calls are
executed under the open
API, L8, TCB. The
application program also
runs on the open API, L8,
TCB when control is
returned to it. No TCB
switches are needed until the
task terminates, or the
program issues a
non-threadsafe CICS
command, which forces a
switch back to the QR TCB
for CICS to ensure resource
integrity.

If you define a program with CONCURRENCY(THREADSAFE), then all routines
that are statically or dynamically called from that program (for example, COBOL
routines) must also be coded to threadsafe standards.

When an EXEC CICS LINK command is used to link from one program to another,
the program link stack level is incremented. However, a routine that is statically
called, or dynamically called, does not involve passing through the CICS command
level interface, and does not cause the program link stack level to be incremented.
With COBOL routines, for a static call, a simple branch and link is used when an
address is resolved by the Linkage Editor. For a dynamic call, although there is a
program definition involved, this is required only so Language Environment® can
load the program. After the load, a simple branch and link is executed. When a
routine is called by either of these methods, CICS does not regard this as a change
of program. The program that called the routine is still considered to be executing,
and the program definition for that program is still considered to be the current
one.

If the program definition for the calling program states
CONCURRENCY(THREADSAFE), then the called routine must also comply with
this specification. Programs with the CONCURRENCY(THREADSAFE) attribute
remain on an open API TCB until they return from a EZASOKET call, and this is
not appropriate for a program that is not threadsafe. For example, consider the
situation where the initial program of a transaction, program A, issues a dynamic
call to program B, which is a COBOL routine. Because the CICS command level

Chapter 6. Writing applications that use the IP CICS sockets API 159

interface was not involved, CICS is unaware of the call to program B, and
considers the current program to be program A. Program B further issues a
EZASOKET call. On return from the EZASOKET call, CICS needs to determine
whether the program can remain on the open API TCB, or whether the program
must switch back to the QR TCB to ensure threadsafe processing. To do this, CICS
examines the CONCURRENCY attribute of what it considers to be the current
program, which is program A. If program A is defined as
CONCURRENCY(THREADSAFE), then CICS allows processing to continue on the
open API TCB. In fact program B is executing, so if processing is to continue safely,
program B must be coded to threadsafe standards.

In summary, to gain the performance benefits of the open transaction environment:

1. IP CICS sockets must be configured to use the open transaction environment by
the use of the OTE=YES configuration option.

2. FORCEQR must be set to NO.

3. The IP CICS sockets application must have threadsafe application logic (that is,
the native language code in between the EXEC CICS commands must be
threadsafe), use only threadsafe EXEC CICS commands, and be defined to CICS
as threadsafe. If the application program is not defined as threadsafe, and so
must operate on the CICS QR TCB, TCB switching occurs for every EZASOKET
request, even if the task-related user exit is running on an open TCB. If the
application program is defined as threadsafe but uses non-threadsafe EXEC
CICS commands, TCB switching occurs for every non-threadsafe EXEC CICS
commands.

4. The IP CICS sockets application must use only threadsafe task-related user exits
and global user exits. If any non-threadsafe exits are used, this forces a switch
back to the QR TCB. If application programs are defined to CICS as
CONCURRENCY(THREADSAFE) and they contain non-threadsafe code,
unpredictable results can occur.

How CICS selects an L8 mode TCB

160

The CICS dispatcher manages the pool of L8 mode TCBs up to the limit set by the
MAXOPENTCBS system initialization parameter. At any one time, the pool can
consist of some TCBs that are allocated to tasks, and others that are free. For
example, if the maximum number of L8 mode TCBs is set to 10, at a particular
time the pool can consist of 5 TCBs, not all of which are allocated to running tasks.
The CICS dispatcher attaches a new TCB when it cannot find a free TCB that is
suitable. The process of allocating an L8 mode TCB is summarized in the following
steps:

1. If the transaction already has an L8 mode TCB allocated, it is used.

2. If there is a free L8 mode TCB for the current subspace, it is allocated and used.

3. If the number of open TCBs is less than the MAXOPENTCBS limit, a new L8
mode TCB is created, and associated with the task's subspace.

4. If the number of open TCBs is at the MAXOPENTCBS limit, but there is a free
L8 mode TCB with the wrong subspace, then the CICS dispatcher destroys it
and creates a new one for the required subspace. This technique avoids
suspending the task until the number of TCBs is less than the pool limit, and is
called stealing. This action is recorded in the CICS dispatcher TCB mode
statistics under the count of TCB steals.

5. If the number of open TCBs is at the MAXOPENTCBS limit and there is no free

open TCB to steal, the task is suspended (with an OPENPOOL wait) until one
becomes free, or the MAXOPENTCBS limit is increased.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

The various events that can occur during the TCB allocation process are recorded
in the dispatcher TCB pool statistics, and these are reported by the DFHOSTAT
statistics program.

Data conversion routines

CICS uses the EBCDIC data format, whereas TCP/IP networks use ASCII. When
moving data between CICS and the TCP/IP network, your application programs
must initiate the necessary data conversion. Sockets for CICS programs can use
routines provided by TCP/IP Services for:

* Converting data from EBCDIC to ASCII and back (when sending and receiving
data to and from the TCP/IP network) with the SEND, SENDMSG, SENDTO,
READ, READV, RECV, RECVFROM, RECVMSG, WRITE, and WRITEV calls.

» Converting between bit arrays and character strings when using the SELECT or
SELECTEX call.

For details of these routines, see EZACIC04, EZACICO05, and EZACICO06,
EZACIC14, and EZACIC15 in [Chapter 8, “Sockets extended API,” on page 245

Application Transparent Transport Layer Security

Before reading this topic, first read the |Application Transparent Transport Layer]
Security (AT-TLS) topid of the [z2/OS Communications Server: IP Configuration|

Guidel

The z/OS Communications Server TCP/IP stack provides Application Transparent
Transport Layer Security (AT-TLS). This allows socket applications that use the
TCP protocol to transparently use the Secure Socket Layer protocol (TLS/SSL) to
communicate with partners in the network. IP CICS sockets enabled applications
can take advantage of this support. This requires the following:

* The TCP/IP stack must support AT-TLS. This can be determined by the TTLS
parameter on the TCPCONFIG statement.

* An AT-TLS Policy configuration that matches identifiers of the CICS applications
that use it. Examples of identifiers that can be used are whether the application
is a listener or client, the IP addresses, and the ports that are used for
communication. Note that for CICS applications, the AT-TLS identity associated
with the AT-TLS environment is always the user ID of the CICS region. This is
the case even if individual CICS transactions are running under their own
identity.

* SSL key rings and certificates must be created for these applications. For CICS
applications using SSL, the user ID that is associated with the keyring is that of
the CICS region. See the |z/OS Communications Server: IP Configuration Guide
for the RACF commands necessary for creating SSL keyrings and certificates. See
the [z/OS Security Server RACF Security Administrator's Guide| for more
information about setting up and managing digital certificates.

* For policy level or application level (such as GETTID) support that requires
mapping SSL Certificates to RACF user IDs see the [z/OS Communications|
[Server: IP Configuration Guide| for more information.

Careful consideration must be given for IP CICS sockets-enabled applications that
act as clients connecting outbound because the AT-TLS policy might not be specific
enough to restrict individual CICS users from logging on to and invoking these
clients. Additional CICS security controls such as transaction security and resource

Chapter 6. Writing applications that use the IP CICS sockets API 161

security can be considered in order to limit users' access to remote hosts. See
[“Example of outbound AT-TLS support” on page 163|for more information.

If a CICS listener is AT-TLS enabled but the client does not use SSL, there is a
mismatch; AT-TLS receives unencrypted data when it is expecting encrypted data.
In this case, AT-TLS resets the connection. See the [Application Transparent|
Transport Layer Security (AT-TLS) topid in the [z/OS Communications Server: IP|
Configuration Guide| for information regarding defining keyrings, client certificates,
mapping them to user IDs, permitting users access to keyrings, and other AT-TLS
details.

When taking advantage of AT-TLS support, CICS application programmers and
TCP/IP administrators must work together to provide the required support. This
can also require communication with RACF administrators.

Example of inbound AT-TLS support

No inbound AT-TLS support is needed for listener port 3010, inbound AT-TLS
support needed for listener port 3011.

Table 18. Inbound AT-TLS support

AT-TLS Definitions CICS listener Parameters
TTLSRule CSKLrule TRANID ===> (SKL
{ PORT ===> 03010
LocalPortRange 3010 GETTID ===> NO
Direction Inbound TRANID ===> (SKM
TTLSGroupActionRef NOTTLSGR PORT ===> (3011
} GETTID ===> YES
TTLSGroupAction NOTTLSGR

{

TTLSEnabled OFF

}

TTLSRule CSKMrule

{

LocalPortRange 3011

Direction Inbound

TTLSGroupActionRef TTLSGRP1

TTLSEnvironmentActionRef TTLSENV1
}
TTLSEnvironmentAction TTLSENV1
{
HandshakeRole ServerWithClientAuth
EnvironmentUserInstance 1
TTLSEnvironmentAdvancedParmsRef TTLSADV1

}
TTLSEnvironmentAdvancedParms TTLSADV1
{

ClientAuthType SAFcheck
}

TTLSGroupAction TTLSGRP1
{

TTLSEnabled ON

}

162 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Example of outbound AT-TLS support

No outbound AT-TLS support is needed for remote port 3010, outbound AT-TLS

support needed for remote port 3011
Table 19. Outbound AT-TLS support

AT-TLS Definitions

TTLSRule ClientRulel
{

RemotePortRange 3010

Userid CICS1

Direction Outbound

TTLSGroupActionRef NOTTLSGR

}

TTLSGroupAction NOTTLSGR
{

TTLSEnabled OFF

}

TTLSRule ClientRule2
{

RemotePortRange 3011

Direction Outbound

TTLSGroupActionRef TTLSGRP2

TTLSEnvironmentActionRef TTLSENV2

}

TTLSEnvironmentAction TTLSENV2
{

HandshakeRole Client
EnvironmentUserInstance 1

}

TTLSGroupAction TTLSGRP2
{

TTLSEnabTled ON

}

Chapter 6. Writing applications that use the IP CICS sockets API

163

164 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 7. C language application programming

This topic describes the C language API provided by CICS TCP/IP and contain the
following topics:

* ["C socket library”|lists the required header files and explains how to make them
available to your programs.

* [“C socket compilation” on page 166 shows how to compile a C socket program
that contains calls to sockets for CICS.

[“Structures used in socket calls” on page 167|lists data structures used in C
language socket calls.

[“The ERRNO variable” on page 170| describes the use of a global variable used
by the socket system to report errors.

* ["C socket call guidance” on page 170| describes the syntax and semantics of the
socket calls and explains what they do and how they work together in the
context of an application.

[“Address Testing Macros” on page 241| describes the macros that is used to test
special IPv6 addresses.

C socket library

To use the socket routines described in this topic, you must include these header
files:

bsdtime.h

bsdtypes.h

cmanifes.h (reentrant programs only)

errno.h (reentrant programs only)

ezacichd.h (non-reentrant programs only)

ezbpinfc.h (if using the SIOCGPARTNERINFO or SIOCSPARTNERINFO IOCTL calls)
ezbztlsc.h (if using IOCTL calls related to AT-TLS)
fcntl.h

if.h

in.h

inet.h

ioctl.h

manifest.h (non-reentrant programs only)

netdb.h

rtrouteh.h

socket.h

uio.h

The files are in the SEZACMAC, SEZAINST, and SEZANMAC data sets, which
must be concatenated to the SYSLIB DD in the compilation JCL (as described in
Step 1 of [“Changes to DFHYITDL” on page 166). These files contain a .h extension
in this text to distinguish them as header files.

In the IBM implementation, you must include either manifest.h (if the program is
non-reentrant) or cmanifes.h (if the program is reentrant) to remap function long
names to 8-character names. To reference manifest.h or cmanifes.h, you need to
include one of the following statements as the first #include at the beginning of
each program:

© Copyright IBM Corp. 2000, 2015 165

Non-reentrant programs:
#include <manifest.h>

Reentrant programs:
#include <cmanifes.h>

Include the following definition to expose the required IPv6 structures, macros,
and definitions in the header files in |“C socket library” on page 165

#define _ CICS_IPV6

Include the following definition to expose structures, macros and definitions in the
TCP C header files previously listed:

#define _ CICS_SOCKETS

Include the in.h header before the socket.h header because the socket.h header
needs structure types that are defined by in.h.

C socket compilation

To compile a C socket program that contains calls to CICS TCP/IP, you must
change the standard procedure for C socket compilation that is provided with
CICS. The CICS sample compile procedures are in SDFHSAMP. To compile a C
sockets program, modify the DFHYITDL procedure to the version of CICS and the
C Compiler that you have installed on your system.

Restriction: The IP CICS C sockets API does not support C++ programs.

For more information about compiling and linking, see |z/OS XL C/C++ User'
Guide] and [z/OS Communications Server: IP Sockets Application Programming]
Interface Guide and Reference]

Changes to DFHYITDL

1. In the C step (running the C socket compiler) you must concatenate the
SEZACMAC, SEZAINST, and SEZANMAC data sets to the SYSLIB DD.

2. In the PLKED step you must concatenate the SEZARNT1 data set to the SYSLIB
DD if and only if the program is to be compiled as reentrant (that is, with the
RENT option). Ensure that the system administrator has performed the actions
listed for Program Reentrancy in Restrictions for Using MV'S TCP/IP API with
z/OS Unix in [z/0S XL C/C++ Programming Guide}

3. In the LKED step you must concatenate the SEZATCP and SEZACMTX data
sets to the SYSLIB DD.

Compile your program
//PROCJOB

//* FOR NON-REENTRANT PROGRAMS CODE NORENT ON THE

//* CPARMS=() STATEMENT, AND ADD THE FOLLOWING INCLUDE
//* STATMENT TO THE LKED.SYSIN DD * STATEMENT:

//* INCLUDE SYSLIB(EZACICO7)

/1%

//* FOR REENTRANT PROGRAMS CODE RENT ON THE

//* CPARMS=() STATEMENT, AND ADD THE FOLLOWING INCLUDE
//* STATMENT TO THE LKED.SYSIN DD % STATEMENT:

//* INCLUDE SYSLIB(EZACIC17)

166 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

/1%
//APPLPROG EXEC DFHYITDL,

// CPARM=('SOURCE, '),

// LNKPARM="'LIST,MAP,LET,XREF'

/1%

//TRN.SYSIN DD DISP=SHR,DSN=YOUR.PROGRAM.SOURCE (PROGNAME)
/1%

//LKED.SYSIN DD =*

/*

INCLUDE SYSLIB(EZACICO7 or EZACIC17)
NAME PROGNAME (R)

Requirements:

If the program is non-reentrant, you must perform the following actions:

— Add an INCLUDE statement for module EZACIC07 and use EZACICO07 in
place of CMIUCSOC.

— Specify the compiler option of NORENT (non-reentrant) when you include
the module EZACICO07 and <ezacichd hé>.

If the program is reentrant, you must perform the following actions:

— Add an INCLUDE statement for module EZACIC17 and use EZACIC17 in
place of CMIUCSOC.

— Specify the compiler option of RENT (reentrant) when you include the
module EZACIC17 and <errno.h>.

You must specify the NOSEARCH C/C++ compiler option to direct the compiler

preprocessor to search only those data sets that are specified in the SYSLIB
statement. For more information about the NOSEARCH compiler option, see
IZ /OS XL C/C++ User's Guidel

Structures used

in socket calls

The parameter lists for some C language socket calls include a pointer to a data
structure defined by a C structure. The structures are defined in the header files
in.h,, socket.h, and if.h. |Table 20| shows the C structure calls.

Table 20. C structures

C structure Format
struct clientid {
clientid int domain;
char name[8];
char subtaskname[8] ;
char reserved[20];
}s
struct ifconf {
ifconf int ifc_len;
union {
Used in the ioctl() caddr_t ifcu_buf;
call only struct ifreq *ifcu_req;
}oifc_ifcus
}s

Chapter 7. C language application programming

167

Table 20. C structures (continued)

C structure Format

struct ifreq {

ifreq #define IFNAMSIZ 16
char ifr_name[IFNAMSIZ];
Used in the ioctl() call only union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;

int ifru_metric;

caddr_t ifru_data;

}oifr_ifru;

}s

struct HomelIf {
NetConfHdr struct in6_addr HomeIfAddress;
1
struct NetConfHdr {
Used in the ioctl() call only char NchEyeCatcher[4];
uint32_t NchIOCTL;
int32_t NchBufferLength;
union {
struct HomeIf * _ ptr32 NchIfHome;
struct GRT6RtEntry *= _ ptr32
NchGRT6RtEntry;
} NchBufferPtr;
int32_t NchNumEntryRet;
}s

struct if_nameindex {
If_Namelndex unsigned int if_index;
char * if_name;

bs

Used in the
if_freenameindex(),
if_indextoname(),
if_nameindex(),

and if_nametoindex() calls

struct Tinger {

linger int 1_onoff;
int 1 _Tinger;

Used in the 1

getsockopt() and setsockopt()

calls only

) struct ip_mreq {

1p_mreq struct in_addr imr_multiaddr;
struct in_addr imr_interface;
Used in the }s

setsockopt()
call only

struct ipvé_mreq {

ipv6_mreq struct in6_addr ipvémr multiaddr;
unsigned int ipvémr_interface;
Used in the 1

setsockopt() call only

168 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 20. C structures (continued)

C structure

Format

sockaddr_in

struct in_addr

{
}s

struct sockaddr_in {
short sin_family;
ushort sin_port;
struct in_addr sin_addr;
char sin_zero[8];

unsigned long s_addr;

}s

sockaddr_in6

struct in6_addr {
union {
uint8_t _S6_u8[16];
uint32_t _S6_u32[4];

} _S6_un;
bs
struct sockaddr_in6 {
uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

1

addrinfo

Use in the getaddrinfo()

and freeaddrinfo() calls

struct addrinfo {

int ai_flags;

int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
char *ai_canonname;

struct sockaddr *ai_addr;
struct addrinfo *ai_next;
int ai_eflags;

}s

timeval

Use in the getsockopt(),
select(), and

setsockopt() calls

struct timeval {
time_t tv_sec;
long tv_usec;

}s

ip_mreq_source

Used in the setsockopt()
call only

struct ip_mreq_source {
struct in_addr imr_multiaddr;
struct in_addr imr_sourceaddr;
struct in_addr imr_interface;

}s

group_req

Used in the setsockopt()
call only

struct group_req {
uint32_t gr_interface;
uint32_t _ gr 01;
struct sockaddr_storage gr_group;

s

Chapter 7. C language application programming

169

Table 20. C structures (continued)

C structure Format

struct group_source_req {

group_source_req uint32_t gsr_interface;

uint32_t _ gsr_01;
Used in the setsockopt() struct sockaddr_storage gsr_group;
call only struct sockaddr_storage gsr_source;

s

#define SetAD_eyel "SETAPPLD"

SetApplData #define SETADVER 1
struct {
Used in the char SetAD_eyel[8];
short SetAD_ver;
SIOCSAPPLDATA ioctl() call short SetAD_len;

char SetAD_rsv[4];
#ifndef _LP64

int SetAD_ptrHW;
#endif

SetADcontainer *SetAD _ptr;
} SetApplData;

#define SETADEYE2 "APPLDATA"
SetADcontainer
typedef struct {

char SetAD eye2[8];
Used in the char SetAD_buffer[40];
} SetADcontainer;

SIOCSAPPLDATA ioctl() call

The ERRNO variable

The global variable errno is used by the socket system calls to report errors. If a
socket call results in an error, the call returns a negative value, and an error value
is set in errno. To be able to access these values, you must add one of the following
include statements:

Non-reentrant programs:

#include <ezacichd.h>

Reentrant programs:
#include <errno.h>

Note:
* Do not use tcperror().
* A copy of EZACICHD.H can be found in dataset hlq.SEZAINST.

C socket call guidance
This topic contains guidance for each C socket call supported by CICS TCP/IP.

For syntax, parameters, and other reference information for each C socket call, see
[z/OS Communications Server: IP Programmer's Guide and Reference}

accept() call

A server issues the accept() call to accept a connection request from a client. The
call uses a socket already created with a socket() call and marked by a listen() call.

170 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

An accept() call

1. Accepts the first connection on its queue of pending connections.

2. Creates a new socket with the same properties as the socket used in the call.
3. Returns the new socket descriptor to the server.

The new socket cannot be used to accept new connections, but is used by the client
for application purposes. The server issues a givesocket() call and a CICS START
command to enable a child server to communicate with the client for application
purposes. The original socket remains available to the server to accept more
connection requests.

The accept() call optionally saves the connection requester’s address for use by the
server.

Note:

¢ If the queue has no pending connection requests, accept() blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling ioctl().

* accept() calls are the only way to screen clients. The application cannot
predetermine clients from which it accepts connections, but it can close a
connection immediately after discovering the identity of the client.

* The select() call checks a socket for incoming connection requests.

accept() call format
This call has the following format:

Chapter 7. C language application programming 171

172

#include
#include
#include
#include
#include
int acce

<manifest.h> (non-reentrant programs only)
<cmanifes.h> (reentrant programs only)
<bsdtypes.h>

<in.h>

<socket.h>

pt(int s, struct sockaddr *name,

int *namelen)

accept() call parameters

S

name

The s parameter is a stream socket descriptor that has already been created
with the socket() call. It is usually bound to an address with the bind() call.
The listen() call marks the socket as one that accepts connections and
allocates a queue to hold pending connection requests. The listen() call
allows the caller to place an upper boundary on the size of the queue.

The pointer to a sockaddr structure into which the address of a client
requesting a connection is placed on completion of the accept() call. If the
server application does not need the client address, set the name parameter
to the NULL pointer before making the accept() call.

The format of the name buffer is expected to be sockaddr_in, for an 1Pv4
socket address, or sockaddr_in6, for an IPv6 socket address, as defined in
the header file in.h. The format of the structure is shown in|Table 20 o

Use the following fields to define the IPv4 socket address structure for the
socket that is to be accepted:

sin_family
Field must be set to AF_INET.

sin_port
Field contains the client's port number.

in_addr.sin_addr
Field contains the 32-bit IPv4 Internet address, in network byte
order, of the client's host machine.

sin_zero
Field is not used and is set to all zeros.

Use the following fields to define the IPv6 socket address structure for the
socket that is to be accepted:

sin6_family
Field must be set to AF_INET6.
sin6_port
Field contains the client's port number.
sin6_flowinfo
Field contains the traffic class and flow label. The value of this
field is undefined.

in6_addr.sin6_addr
Field contains the 128-bit IPv6 Internet address, in network byte
order, of the client's host machine.

sin6_scope_id
Field identifies a set of interfaces as appropriate for the scope of
the address carried in the in6_addr.sin6_addr field. For a link scope

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

in6_addr.sin6_addr, sin6_scope_id contains the link index for the
in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is
undefined.

namelen
The size, in bytes, of the buffer pointed to by name. For an IPv4 socket
address, the namelen parameter should contain a decimal 16. For an IPv6
socket address, the namelen parameter should contain a decimal 28.

accept() call return values

A nonnegative socket descriptor indicates success; the value -1 indicates an error.
To determine which error occurred, check the errno global variable, which is set to
a return code. Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using name and namelen results in an attempt to copy the address into a
portion of the caller’s address space into which information cannot be
written.

EINVAL
Listen() was not called for socket s.

ENOBUFS
Insufficient buffer space is available to create the new socket.

EOPNOTSUPP
The s parameter is not of type SOCK_STREAM.

EWOULDBLOCK
The socket s is in nonblocking mode, and no connections are in the queue.

bind() call

The bind() call binds a unique local port to an existing socket. Note that, on
successful completion of a socket() call, the new socket descriptor does not have an
associated port.

The bind() call can specify the required port or let the system choose. A listener
application should always bind to the same well-known port, so that clients can
know which port to use.

Even if an application specifies a value of 0 for the IP address on the bind(), the
system administrator can override that value by specifying the BIND parameter on
the PORT reservation statement in the TCP/IP profile. This has an effect similar to
the application specifying an explicit IP address on the bind() function. For more
information, see |z/OS Communications Server: IP Configuration Reference]

bind() format

This call has the following format:

Chapter 7. C language application programming 173

#include
#include
#include
#include
#include

<manifest.h> (non-reentrant programs only)
<cmanifes.h> (reentrant programs only)

<bsdtypes.h>
<socket.h>
<in.h>

int bind(int s, struct sockaddr *name,
int namelen)

bind() parameters

S

name

The socket descriptor returned by a previous socket() call.

The pointer to a socket address structure that contains the name that is to
be bound to s. The format of the name buffer is expected to be sockaddr_in
for an IPv4 socket address or sockaddr_in6 for an IPv6 socket address, as
defined in the header file in.h. The format of the structure is shown in
[Table 20 on page 167}

Use the following fields to specify the IPv4 socket address structure for the
socket that is to be bound:

sin_family
Field must be set to AF_INET.

sin_port
Field is set to the port to which the application must bind. It must
be specified in network byte order. If sin_port is set to 0, the caller
expects the system to assign an available port. The application can
call getsockname() to discover the port number assigned.

in_addr.sin_addr
Field is set to an IPv4 IP address and must be specified in network
byte order. On hosts with more than one network interface (called
multihomed hosts), you can select the interface to which it is to
bind. Subsequently, only TCP connection requests from this
interface are routed to the application.

If you set this field to the constant INADDR_ANY, as defined in
in.h, the socket is bound to all network interfaces on the host. By
leaving the address unspecified with INADDR_ANY, the server
can accept all TCP connection requests made for its port, regardless
of the network interface on which the requests arrived. Set
INADDR_ANY for servers that offer a service to multiple
networks.

sin_zero
Field is not used and must be set to all zeros.

Use the following fields to specify the IPv6 socket address structure for the
socket that is to be bound:

sin6_family
Field must be set to AF_INET®6.

sin6_port
Field is set to the port to which the application must bind. It must
be specified in network byte order. If sin6_port is set to 0, the caller
expects the system to assign an available port. The application can
call getsockname() to discover the port number assigned.

174 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

sin6_flowinfo
Field is used to specify the traffic class and flow label. This field
must be set to zero.

in6_addr.sin6_addr
Field is set to an IPv6 address and must be specified in network
byte order. On hosts with more than one network interface (called
multihomed hosts), you can select the interface to which it is to
bind. Subsequently, only TCP connection requests from this
interface are routed to the application.

If you set this field to the constant in6addr_any, as defined in in.h,
the socket is bound to all network interfaces on the host. By
leaving the address unspecified with in6addr_any, the server can
accept all TCP connection requests made for its port, regardless of
the network interface on which the requests arrived. Set
inbaddr_any for servers that offer a service to multiple networks.

sin6_scope_id
Field is used to identify a set of interfaces as appropriate for the
scope of the address carried in the in6_addr.sin6_addr field. A value
of zero indicates the sin6_scope_id field does not identify the set of
interfaces to be used, and might be specified for any address types
and scopes. For a link scope in6_addr.sin6_addr field, sin6_scope_id
might specify a link index which identifies a set of interfaces. For
all other address scopes, sin6_scope_id must be set to zero.

namelen
The size, in bytes, of the buffer pointed to by name. For an IPv4 socket
address, the namelen parameter should contain a decimal 16. For an IPv6
socket address, the namelen parameter should contain a decimal 28.

bind() return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EADDRINUSE
The address is already in use. See the SO_REUSEADDR option described
in [“getsockopt(), setsockopt() calls” on page 200| for more information.

The address is in a timed wait because a LINGER delay from a previous
close or another process is using the address. This error also occurs if the
port specified in the bind call has been configured as RESERVED on a port
reservation statement in the TCP/IP profile.

If you want to reuse the same address, use the SO_REUSEADDR

parameter in setsockopt(). If you do not want to reuse the same address,
use a different address or port in the socket address structure. If the port
has been configured as RESERVED, then the port is unavailable for bind.

EADDRNOTAVAIL
The address specified is not valid on this host. For example, the IP address
does not specify a valid network interface.

EAFNOSUPPORT
The address family is not supported (it is not AF_INET or AF_INETS).

EBADF
The s parameter is not a valid socket descriptor.

Chapter 7. C language application programming 175

176

EFAULT
Using name and namelen results in an attempt to copy the address into a
nonwritable portion of the caller’s address space.

EINVAL
The socket is already bound to an address. An example is trying to bind a
name to a socket that is in the connected state. This value is also returned
if namelen is not the expected length.

bind2addrsel() call

The bind2addrsel() call binds a socket to the local IP address that would be
selected by the stack to communicate with the input destination IP address.

In a TCP or UDP application, the bind2addrsel() call usually follows the
setsockopt() call with optname IPV6_ADDR_PREFERENCES, and precedes any
communication with a remote host. The bind2addrsel() call is used when the
application must verify that a local IP address that is assigned by the stack meets
its address selection criteria as provided by the IPV6_ADDR_PREFERENCES
socket option before sending any packets to the remote host.

Result: The stack attempts to select a local IP address according to your
application preferences. However, a successful bind2addrsel() result does not
guarantee that all your source IP address selection preferences were met.

Guidelines:

* Use the setsockopt() call to set the IPV6_ADDR_PREFERENCES options to
indicate your source IP address selection preferences before binding the socket,
and before allowing an implicit bind of the socket to occur.

Tip: If a socket has not been explicitly bound to a local IP address with a bind()
or bind2addrsel() call when a connect(), sendto(), or sendmsg() call is issued, an
implicit bind occurs.

* After you successfully issue the bind2addrsel() call, use the getsockname() call to
obtain the local IP address bound to the socket. After the local IP address is
obtained, use the inet6_is_srcaddr() call to verify that the local IP address meets
your address selection criteria.

bind2addrsel() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

int bind2addrsel (int s, const struct sockaddr =*name,
socklen_t namelen)

bind2addrsel() parameters
s The socket descriptor returned by a previous socket() call.

Requirement: The socket must be an AF_INET6 socket. The type can be
SOCK_STREAM or SOCK_DGRAM.

name The pointer to an IPv6 socket address structure that contains the name that
is to be bound to the socket descriptor specified by the s parameter. The

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

format of the name buffer is expected to be sockaddr_in6 as defined in the
header file in.h. The format of the structure is shown in [Table 20 on page|

Use the following fields to specify the IPv6 socket address structure for the
socket that is to be bound:

sin6_family
Field must be set to AF_INET®6.

sin6_port
A halfword binary field. This field is ignored by bind2addrsel()
processing.

Guideline: To determine the assigned port number, issue the
getsockname() call after the bind2addrsel() call completes.

sin6_flowinfo
A fullword binary field. This field is ignored by bind2addrsel()
processing.

in6_addr.sin6_addr
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address (network byte order) of the remote host that the socket
will communicate with.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6
format.

sin6_scope_id
A fullword binary field thatidentifies a set of interfaces as
appropriate for the scope of the address specified in the
in6_addr.sin6_addr field. The value 0 indicates that the sin6_scope_id
field does not identify the set of interfaces to be used.

Requirements: The sin6_scope_id value must be nonzero if the
address is link-local. For all other address scopes, the sin6_scope_id
value must be set to 0.

namelen
The size, in bytes, of the buffer pointed to by the name parameter. The
namelen parameter should contain the decimal value 28.

bind2addrsel() return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EADDRNOTAVAIL
For the specified destination address, there is no source address that the
application can bind to. Possible reasons can be one of the following
situations:

* The socket is a stream socket, but the specified destination address is a
multicast address.

* No ephemeral ports are available to assign to the socket.

EAFNOSUPPORT
The address family is not supported. The address family must be
AF_INETS6.

EBADF
The s parameter is not a valid socket descriptor.

Chapter 7. C language application programming 177

EFAULT
Using the name and namelen parameters results in an attempt to copy the
address into a nonwritable portion of the address space of the caller.

EHOSTUNREACH
There is no route to the host.

EINVAL
The socket is already bound to an address. An example is trying to bind a
name to a socket that is in the connected state. This value is also returned
if the namelen value is not the expected length.

EPROTOTYPE
The referenced socket is not a stream (TCP) or datagram (UDP) socket.

close() call

A close() call shuts down a socket and frees all resources allocated to the socket. If
the socket refers to an open TCP connection, the connection is closed. If a stream
socket is closed when input data is queued, the TCP connection is reset rather than
being cleanly closed.

close() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>
int close(int s)

close() call parameter
s The descriptor of the socket to be closed.

close() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

connect() call

A connect() call attempts to establish a connection between a local socket and a
remote socket. For a stream socket, the call performs two tasks. First, it completes
the binding necessary for a stream socket in case it has not been previously bound
by a bind() call. Second, it attempts to make a connection to another socket.

The connect() call on a stream socket is used by a client application to establish a
connection to a server. To be able to accept a connection with an accept() call, the
server must have a passive open pending, which means it must have successfully
called bind() and listen() before the client issues connect().

If the socket is in blocking mode, the connect() call blocks the caller until the
connection is set up, or until an error is received. If the socket is in nonblocking
mode and no errors occurred, the return codes indicate that the connection can be
initiated. The caller can test the completion of the connection setup by calling
select() and testing for the ability to write to the socket.

178 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Stream sockets can call connect() one time only.

connect() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>
#include <socket.h>
#include <in.h>

int connect(int s, struct sockaddr *name, int namelen)

connect() call parameters

S

name

The socket descriptor of the socket that is going to be used as the local
endpoint of the connection.

The pointer to a socket address structure that contains the destination
socket address to which a connection is requested.

The format of the name buffer is expected to be sockaddr_in for an IPv4
socket address or sockaddr_in6 for an IPv6 socket address, as defined in the
header file in.h. The format of the structure is shown in [Table 20 on page]

Use the following fields to specify the IPv4 socket address structure for the
socket that is to be bound:

sin_family
Field must be set to AF_INET.

sin_port
Field is set to the port to which the server is bound. It must be
specified in network byte order.

in_addr.sin_addr
Field is set to the 32-bit IPv4 Internet address of the server's host
machine in network byte order.

sin_zero
Field is not used and must be set to all zeros.

Use the following fields to specify the IPv6 socket address structure for the
socket that is to be bound:

sin6_family
Field must be set to AF_INET®6.

sin6_port
Field is set to the port to which the server is bound. It must be
specified in network byte order.

sin6_flowinfo
Field is used to specify the traffic class and flow label. This field
must be set to zero.

in6_addr.sin6_addr
Field is set to the 128-bit IPv6 Internet address of the server's host
machine in network byte order.

sin6_scope_id
Field is used to identify a set of interfaces as appropriate for the
scope of the address carried in the in6_addr.sin6_addr field. A value

Chapter 7. C language application programming 179

180

of zero indicates the sin6_scope_id field does not identify the set of
interfaces to be used, and might be specified for any address types
and scopes. For a link scope in6_addr.sin6_addr, sin6_scope_id might
specify a link index which identifies a set of interfaces. For all
other address scopes, sin6_scope_id must be set to zero.

namelen
The size of the socket address pointed to by name in bytes. For an IPv4
socket address the namelen parameter should contain a decimal 16 and for
an IPv6 socket address the namelen parameter should contain a decimal 28.

connect() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EADDRNOTAVAIL
The calling host cannot reach the specified destination.

EAFNOSUPPORT
The address family is not supported.

EALREADY
The socket s is marked nonblocking, and a previous connection attempt
has not completed.

EBADF
The s parameter is not a valid socket descriptor.

ECONNREFUSED
The connection request was rejected by the destination host.

EFAULT
Using name and namelen results in an attempt to copy the address into a
portion of the caller’s address space to which data cannot be written.

EINPROGRESS
The socket s is marked nonblocking, and the connection cannot be
completed immediately. The EINPROGRESS value does not indicate an
error condition.

EINVAL
The namelen parameter is not a valid length.

EISCONN
The socket s is already connected.

ENETUNREACH
The network cannot be reached from this host.

ETIMEDOUT
The connection establishment timed out before a connection was made.

fcentl() call

The fentl() call controls whether a socket is in blocking or nonblocking mode.

The blocking or nonblocking mode of a socket affects the operation of certain
commands. In blocking mode, a call waits for certain events until they happen.
When this happens, the operating system suspends the program until the event
occurs.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

In similar situations with nonblocking calls, the call returns an error return code
and the program continues.

fentl() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>

#include <bsdtypes.h>

#include <fcntl.h>

signed int fcntl(int s, int cmd, int arg)

fentl() call parameters
s The socket descriptor.
cmd ~ The command to perform. Set cmd to one of the following:

F_SETFL
This command sets the status flags of socket s. One flag,
FNDELAY, can be set.

Setting the FNDELAY flag marks s as being in nonblocking mode.
If data is not present on calls that can block, such as recvfrom(),
the call returns -1, and errno is set to EWOULDBLOCK.

F_GETFL
This command gets the status flags of socket s. One flag,
FNDELAY, can be queried.

The FNDELAY flag marks s as being in nonblocking mode. If data
is not present on calls that can block, such as recvfrom(), the call
returns with -1, and errno is set to EWOULDBLOCK.

arg Set to FNDELAY if using F_SETFL. Ignored otherwise.

fentl() call return values

For the F_GETFL command, the return value is a bit mask that is comprised of the
flag settings. For the F_SETFL command, the value 0 indicates success; the value -1
indicates an error. To determine which error occurred, check the errno global
variable, which is set to a return code. Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EINVAL
The arg parameter is not a valid flag.

freeaddrinfo() call

The freeaddrinfo() call receives an input addrinfo structure pointer and releases
that storage (plus any other chained addrinfo structures and related storage) back
into the general storage pool.

freeaddrinfo() call format
This call has the following format:

Chapter 7. C language application programming 181

#include
#include
#include
#include
#include

<manifest.h> (non-reentrant programs only)
<cmanifes.h> (reentrant programs only)

<socket.h>
<in.h>
<netdb.h>

void freeaddrinfo(struct addrinfo *ai)

freeaddrinfo() call parameters

ai A pointer to an addrinfo structure returned by the getaddrinfo() res
function variable.

freeaddrinfo() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EAI_AGAIN
The resolver address space has not been started. The request can be retried
at a later time.

EAI_FAIL
An unrecoverable error has occurred.

gai_strerror() call

The gai_strerror() function returns a pointer to a text string describing the error
value returned by a failure return from either the getaddrinfo() or getnameinfo()
function. If the ecode is not one of the EAI_xxx values from the <netdb.h> then
gai_strerror() returns a pointer to a string indicating an unknown error. Subsequent
calls to gai_strerror() overwrites the buffer that contains the text string.

gai_strerror() call format
This call has the following format:

182 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <netdb.h>

const char *gai_strerror(int ecode)

gai_strerror() call parameters

ecode

The errno value returned by the getaddrinfo() or getnameinfo() functions.

gai_strerror() call return values
When successful, gai_strerror() returns a pointer to a string describing the error.
Upon failure, gai_strerror() returns NULL and set errno to the following:

ENOMEM

Insufficient memory to allocate buffer for text string describing the error.

getaddrinfo() call

The getaddrinfo() call translates the name of a service location (for example, a host
name), a service name, or both and returns a set of socket addresses and associated
information. This information is used to open a socket with which to address the
specified service or to send a datagram to the specified service.

getaddrinfo() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>
#include <in.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints,
struct addrinfo *+*res)

getaddrinfo() call parameters

nodename

Maximum storage of 256 bytes that contains the null closed host name
being queried. If the AL NUMERICHOST flag is specified in the storage
pointed to by the hints parameter, nodename should contain the queried
host IP address in presentation form.

You can append scope information to the host name, using the format
nodename%scope information. The combined length of the value specified
must still fit within 256 bytes, and must still be null terminated. For
information about using scope information about getaddrinfo() processing,
see [z/0S Communications Server: IPv6 Network and Application Design|

|Guide| .

seronamnie

hints

Maximum storage of 33 bytes that contains the null terminated service
name being queried. If the AI_NUMERICSERYV flag is specified in the

storage pointed to by the hints parameter, servname should contain the
queried port number in presentation form.

Contains the address of an addrinfo structure that contains input values that
might direct the operation by providing options and by limiting the

Chapter 7. C language application programming 183

184

returned information to a specific socket type, address family, and protocol.
If the hints parameter is 0, then the information returned is as if it referred
to a structure that contains the value 0 for the ai_flags, ai_socktype, and
ai_protocol fields, and AF_UNSPEC for the ai_family field.

The addrinfo structure has the following fields:

ai_flags
A fullword binary field. The value of this field must be 0 or the
bitwise OR of one or more of the following flags:

AI_PASSIVE

Specifies how to fill in the ai_addr pointed to by the
returned res.

If this flag is specified, the returned address information is
suitable for use in binding a socket for accepting incoming
connections for the specified service (for example, the
bind() call). In this case, if the nodename parameter is null,
the IP address portion of the socket address structure
pointed to by the returned res is set to INADDR_ANY, for
an IPv4 address, or to the IPv6 unspecified address
(in6baddr_any).

If this flag is not set, the returned address information is
suitable for the connect() call (for a connection-mode
protocol) or for a connect(), sendto() or sendmsg() call (for
a connectionless protocol). In this case, if the nodename
parameter is not specified, the ai_addr pointed to by the
returned res is set to the loopback address.

This flag is ignored if the nodename parameter is specified.

AI_CANONNAMEOK
If this flag is specified and the nodename parameter is
specified, the getaddrinfo() call attempts to determine the
canonical name corresponding to the nodename parameter.

AI_NUMERICHOST
If this flag is specified, the nodename parameter must be a
numeric host address in presentation form. Otherwise, an
error of host not found [EAI_NONAME] is returned.

AI_NUMERICSERV
If this flag is specified, the servname parameter must be a

numeric port in presentation form. Otherwise, an error
[EAI_NONAME] is returned.

AI_V4MAPPED
If this flag is specified with the ai_family field using the
value of AF_INET®6, or the value of AF_UNSPEC when
IPv6 is supported on the system, the caller accepts
IPv4-mapped IPv6 addresses. When the AI_ALL flag is not
also specified, if no IPv6 addresses are found, a query is
made for IPv4 addresses. If IPv4 addresses are found, they
are returned as IPv4-mapped IPv6 addresses. If the
ai_family field does not have the value of AF_INETS6, or the
ai_family field contains AF_UNSPEC but IPv6 is not
supported on the system, then this flag is ignored.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

AI_ALL
If the ai_family field has a value of AF_INET6 and Al ALL
is set, the AI_VAMAPPED flag must also be set to indicate
that the caller accepts all addresses: IPv6 and IPv4-mapped
IPv6 addresses. If the ai_family field has a value of
AF_UNSPEC when the system supports IPv6 and AI_ALL
is set, the caller accepts both IPv6 and IPv4 addresses. A
query is first made for IPv6 addresses and if successful, the
IPv6 addresses are returned. Another query is then made
for IPv4 addresses, and any IPv4 addresses found are
returned as IPv4-mapped IPv6 addresses (if
AI_V4MAPPED is also specified) or as IPv4 addresses (if
AI_V4MAPPED is not specified). If the ai_family field does
not have the value of AF_INETS6, or does not have the
value of AF_UNSPEC when the system supports IPv6, then
this flag is ignored.

AI_ADDRCONFIG
If this flag is specified, then a query on the name in
nodename occurs if the resolver determines that one of the
following is true:

¢ If the system is IPv6 enabled and has at least one IPv6
interface, the resolver makes a query for IPv6 (AAAA or
A6 DNS records) records.

* If the system is IPv4 enabled and has at least one IPv4

interface, the resolver makes a query for IPv4 (A DNS
records) records.

AI_EXTFLAGS
If this flag is specified, the addrinfo structure contains an
ai_eflags field (see the field description of ai_eflags).

ai_family

Used to limit the returned information to a specific address family.
The value of AF_UNSPEC means that the caller accepts any
protocol family. The value of a decimal 0 indicates AF_UNSPEC.
The value of a decimal 2 indicates AF_INET and the value of a
decimal 19 indicates AF_INET®6.

ai_socktype

Type Name
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

Used to limit the returned information to a specific socket type. A
value of 0 means that the caller accepts any socket type. If a
specific socket type is not given (for example, a value of 0),
information about all supported socket types are returned.

The following are the acceptable socket types:

Decimal Value Description

1 for stream socket

2 for datagram socket

3 for raw-protocol interface

Any other socket type fails with a return code of EAI_SOCKTYPE.
Note that although SOCK_RAW is accepted, it is valid only when
servoname is numeric (for example, servname=23). A lookup for a
service name never occurs in the appropriate services file (for
example, hlg. ETC.SERVICES) using any protocol value other than

Chapter 7. C language application programming 185

186

SOCK_STREAM or SOCK_DGRAM. If ai_protocol is not 0 and
ai_socktype is 0, the only acceptable input values for ai_protocol are
IPPROTO_TCP and IPPROTO_UDP; otherwise, the getaddrinfo()
function fails with a return code of EAI_ BADFLAGS. If ai_socktype
and ai_protocol are both specified as 0, getaddrinfo() proceeds as
follows:

e If servname is null, or if servname is numeric, any returned
addrinfo structures default to a specification of ai_socktype as
SOCK_STREAM.

* If servname is specified as a service name, for example
servname=FTP, the getaddrinfo() call searches the appropriate
services file (for example, hlg. ETC.SERVICES) twice. The first
search uses SOCK_STREAM as the protocol, and the second
search uses SOCK_DGRAM as the protocol. No default socket
type provision exists in this case.

If both ai_socktype and ai_protocol are specified as nonzero, then
they should be compatible, regardless of the value specified by the
servname parameter. In this context, compatibility means one of the
following:

* ai_socktype=SOCK_STREAM and ai_protocol=IPPROTO_TCP
* ai_socktype=SOCK_DGRAM and ai_protocol=IPPROTO_UDP

* ai_socktype is specified as SOCK_RAW. In this case, ai_protocol
can be anything.

ai_protocol

Protocol Name
IPPROTO_TCP
IPPROTO_UDP

Used to limit the returned information to a specific protocol. A
value of 0 means that the caller accepts any protocol.

The following are the acceptable protocols:

Decimal Value Description
6 TCP
17 user datagram

If ai_protocol and ai_socktype are both specified as 0, getaddrinfo()
proceeds as follows:

* If servname is null, or if servname is numeric, then any returned
addrinfos default to a specification of ai_socktype as
SOCK_STREAM.

* If servname is specified as a service name (for example,
servname=FTP), getaddrinfo() searches the appropriate services
file (for example, hlg. ETC.SERVICES) twice. The first search uses
SOCK_STREAM as the protocol, and the second search uses
SOCK_DGRAM as the protocol. No default socket type
provision exists in this case.

If both ai_socktype and ai_protocol are specified as nonzero then they
should be compatible, regardless of the value specified by
servname. In this context, compatibility means one of the
following:

e ai_socktype=SOCK_STREAM and ai_protocol=IPPROTO_TCP
* ai_socktype=SOCK_DGRAM and ai_protocol=IPPROTO_UDP

* ai_socktype=SOCK_RAW. In this case, ai_protocol can be anything.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

If the lookup for the value specified in servname fails [that is, the
service name does not appear in the appropriate services file (for
example, hlg. ETC.SERVICES) using the input protocol], the
getaddrinfo() call fails with return code of EAI_SERVICE.

ai_addrlen
On input, this field must be 0.

ai_canonname
On input, this field must be 0.

ai_addr
On input, this field must be 0.

ai_next
On input, this field must be 0.

ai_eflags
A fullword binary field that specifies the source IPv6 address
selection preferences. This field is required if AI_EXTFLAGS is
specified in the ai_flags field. The value of this field must be 0 or
the bitwise OR of one or more of the following flags:

IPV6_PREFER_SRC_HOME
Indicates that home source IPv6 addresses are preferred
over care-of source IPv6 addresses.

IPV6_PREFER_SRC_COA
Indicates that care-of source IPv6 addresses are preferred
over home source IPv6 addresses.

IPV6_PREFER_SRC_TMP
Indicates that temporary source IPv6 addresses are
preferred over public source IPv6 addresses.

IPV6_PREFER_SRC_PUBLIC
Indicates that public source IPv6 addresses are preferred
over temporary source IPv6 addresses.

IPV6_PREFER_SRC_CGA
Indicates that cryptographically generated source IPv6
addresses are preferred over non-cryptographically
generated source [Pv6 addresses.

IPV6_PREFER_SRC_NONCGA
Indicates that non-cryptographically generated source IPv6
addresses are preferred over cryptographically generated
source IPv6 addresses.

If contradictory or invalid EFLAGS are specified, the
GETADDRINFO call fails with the return code -1 and the errno
EAI_BADEXTFLAGS (decimal value 11).

* An example of contradictory EFLAGS is
IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC.

* An example of invalid EFLAGS is X'00000040', or a decimal
value of 64.

Note: The field is required only if AI_EXTFLAGS is specified in
the ai_flags filed.

res Initially a fullword binary field. On a successful return, this field contains a
pointer to a chain of one or more addrinfo structures. The structures are

Chapter 7. C language application programming 187

188

allocated in the key of the calling application. The structures returned by
getaddrinfo() are serially reusable storage for the z/OS UNIX process. The
structures can be used or referenced between process threads, but should
not be used or referenced between processes. When you finish using the
structures, explicitly release their storage by specifying the returned pointer
on a freaddrinfo() call.

The address information structure contains the following fields:

ai_flags
Not used as output.

ai_family
The value returned in this field can be used as the domain
argument on the socket() call to create a socket suitable for use
with the returned socket address pointed to by ai_addr.

ai_socktype
The value returned in this field can be used as the type argument
on the socket() call to create a socket suitable for use with the
returned address socket pointed to by ai_addr.

ai_protocol
The value returned in this field can be used as the protocol
argument on the socket() call to create a socket suitable for use
with the returned socket address pointed to by ai_addr.

ai_addrlen
The length of the socket address structure pointed to by the ai_addr
field. The value returned in this field can be used as the arguments
for the connect() or bind() call with this socket type, according to
the AI_PASSIVE flag.

ai_canonname
A pointer to the canonical name for the value specified by
nodename. If the nodename argument is specified, and if the
AI_CANONNAMEOK flag was specified by the hints parameter,
the ai_canonname field in the first returned address information
structure contains the address of storage that contains the canonical
name corresponding to the input nodename parameter. If the
canonical name is not available, the ai_canonname field refers to the
nodename parameter or a string with the same contents.

ai_addr
The address of the returned socket address structure. The value
returned in this field can be used as the arguments for the
connect() or bind() call with this socket type, according to the
AI_PASSIVE flag.

ai_next
Contains the address of the next address information structure on
the list, or zeros if it is the last structure on the list.

ai_eflags

This field is not used as output.

getaddrinfo() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EAI_AGAIN
The name specified by the nodename parameter could be not be resolved
within the configured time interval, or the resolver address space has not
been started. The request can be retried at a later time.

EAI_ BADFLAGS
The flags parameter had a value that is incorrect.

EAI_BADEXTFLAGS
The ai_eflags parameter had a value that is incorrect.

EAI_FAMILY
The family parameter has a value that is incorrect.

EAI_MEMORY
Memory allocation failure occurred trying to acquire an addrinfo structure.

EAI_NONAME
The name does not resolve for the specified parameters. At least one of the
nodename or servname parameters must be specified. Or the requested
nodename parameter is valid but does not have a record at the name
server.

EAI_SERVICE
The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE
The intended socket type was not recognized.

getclientid() call

A getclientid() call returns the identifier by which the calling application is known
to the TCP/IP address space. Do not be confused by the term client in the name of
this call; the call always returns the ID of the calling process, be it client or server.
For example, in CICS TCP/IP, this call is issued by the IBM listener; the identifier
returned in that case is that of the listener (a server). This identifier is used in the
givesocket() and takesocket() calls.

getclientid() call format
This call has the following format:

Chapter 7. C language application programming 189

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>

#include <socket.h>

int getclientid(int domain, struct clientid *clientid)

getclientid() call parameters

domain The domain must be set to AF_INET when requesting client data from an
IPv4 stack and it must be set to AF_INET6 when requesting client data
from an IPv6 stack.

clientid Points to a clientid structure to be provided.

domain Domain associated with the program executing this call. Contains
either AF_INET (a decimal 2) or AF_INET6 (a decimal 19).

name Address space name associated with the program executing this
call.

subtaskname
Subtask name associated with the program executing this call.

reserved
Binary zeros.

getclientid() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EFAULT
Using the clientid parameter as specified results in an attempt to access
storage outside the caller’s address space, or storage not modifiable by the
caller.

EPFNOSUPPORT
Domain is not AF_INET or AF_INET6.

gethostbyaddr() call

The gethostbyaddr() call tries to resolve the IP address to a host name. The
resolution attempted depends on how the resolver is configured and if any local
host tables exist. See [z/OS Communications Server: IP Configuration Guide| for
information about configuring the resolver and using local host tables.

gethostbyaddr() call format

This call has the following format:

190 2z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <netdb.h>

struct hostent *gethostbyaddr(char *addr, int addrlen, int domain)

gethostbyaddr() call parameters

addr The pointer to an unsigned long value that contains the address of the
host.

addrlen
The size of addr in bytes.

domain The address domain supported (AF_INET).

gethostbyaddr() call return values

The gethostbyaddr() call returns a pointer to a hostent structure for the host
address specified on the call. For more information about the hostent structure, see
[Figure 128 on page 279} A null pointer is returned if the gethostbyaddr() call fails.

There are no errno values for gethostbyaddr().

gethostbyname() call

The gethostbyname() call tries to resolve the host name to an IP address. The
resolution attempted depends on how the resolver is configured and if any local
host tables exist. See [z/OS Communications Server: IP Configuration Guide| for
information about configuring the resolver and using local host tables.

gethostbyname() call format
This call has the following format:

Chapter 7. C language application programming 191

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <netdb.h>

struct hostent *gethostbyname(char *name)

gethostbyname() call parameters

name The name of the host being queried. The name has a maximum length of
255 characters.

gethostbyname() call return values

The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call. For more information about the hostent structure, see

[Figure 130 on page 282} A null pointer is returned if the gethostbyname() call fails.

There are no errno values for gethostbyname().

A new part called EZACIC17 has been created. EZACIC17 is like EZACIC07 except
it uses the internal C errno function. Also, a new header file called cmanifes.h has
been created to remap EZACIC17's long function names into unique 8-character
names.

EZACIC07 and EZACIC17 now support the gethostbyaddr() and gethostbyname()
functions.

gethostid() call

The gethostid() call gets the unique 32-bit identifier for the current host in network
byte order. This value is the default home IP address.

gethostid() call format
This call has the following format:

192 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

unsigned long gethostid()

gethostid() call parameters
None.

gethostid() call return values
The gethostid() call returns the 32-bit identifier of the current host, which should
be unique across all hosts.

gethostname() call

The gethostname() call returns the name of the host processor on which the
program is running.

Note: The host name that is returned is the host name that the TCPIP stack
learned at startup. For more information about hostname, see |HOSTNAME|
[statement] in [z/OS Communications Server: IP Configuration Reference]

gethostname() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int gethostname(char *name, int namelen)

gethostname() call parameters

name The character array to be completed with the host name. The name that is
returned is NULL-terminated unless truncated to the size of the name
array.

namelen
The length of the name value. The minimum length of the name field is 1
character. The maximum length of the name field is 24 characters.

gethostname() call return values

The value 0 indicates success; the value -1 indicates an error. To determine what
error has occurred, check the errno global variable, which is set to a return code.
Possible codes are:

EFAULT
The name parameter specified an address outside the caller's address space.

getipv4sourcefilter() call

Obtains a list of the IPv4 source addresses that comprise the source filter, along
with the current mode on a given interface and a multicast group for a socket. The
source filter can either include or exclude the set of source addresses, depending
on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

getipv4dsourcefilter() call format
This call has the following format:

Chapter 7. C language application programming 193

#include <manifest.h> (non-reentrant programs only)
#include <camifes.h> (reentrant programs only)

#include <netinet.h>

int getipvé4sourcefilter(int s,

struct in_addr interface,

struct in_addr group,

uint32_t xfmode, wuint32_t *numsrc,
struct in_addr *slist)

getipv4dsourcefilter() call parameters
s The socket descriptor.

interface
The local IP address of the interface.

group The IP multicast address of the group.

fmode A pointer to an integer that contains the filter mode on a successful return.
The value of the filter mode can be MCAST_INCLUDE or
MCAST_EXCLUDE.

numsrc
As an input parameter, a pointer to the number of source addresses that
can fit in the array specified by the slist parameter. As an output
parameter, a pointer to the total number of source addresses in the filter.

slist A pointer to an array of IP addresses that is either included or excluded,
depending on the filter mode. If the numsrc value was 0 on input, a NULL
pointer can be supplied.

If the application does not know the size of the source list before, it can make a
reasonable guess (for example, 0). When the process completes, the numsrc value is
larger, the operation can be repeated with a larger buffer.

On return, the numsrc value is always updated to be the total number of sources in
the filter. The slist value specifies as many source addresses as fit, up to the
minimum array size that was specified by the numsrc value and the total number
of sources in the filter.

getipv4sourcefilter() call return values
When successful, the value 0 is returned. When an error has occurred, the value -1
is returned and the errno value is one of the following:

EBADF
The s parameter value is not a valid socket descriptor.

EINVAL
The interface or group parameter value is not a valid IPv4 address, or the
socket s has already requested multicast setsockopt options. For more
information, see the |z/OS Communications Server: IP Sockets Application|
[Programming Interface Guide and Reference|

EPROTOTYPE
The socket protocol type is not correct.

EADDRNOTAVAIL
The tuple consisting of socket, interface, and multicast group values does
not exist, or the specified interface address is incorrect for this host, or the
specified interface address is not multicast capable.

194 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

ENOMEM

Insufficient storage is available to supply the array.

getnameinfo() call

The getnameinfo() call returns the node name and service location of a socket
address that is specified in the call.

getnameinfo() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>
#include <in.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, socklen_t hostlen,
char *serv, socklen_t servlen,

int flags)

getnameinfo() call parameters

sa

salen

host

The pointer to a socket address structure that is expected to be either
sockaddr_in for an IPv4 socket address or sockaddr _in6 for an IPv6 socket
address, as defined in the header file in.h. [Table 20 on page 167 shows the
format of the structure.

The following fields are used to specify the IPv4 socket address structure
to be translated.

* The sin_family field must be set to AF_INET.
* The sin_port field is set to a port number, in network byte order.

* The in_addr.sin_addr field is set to an IPv4 address and must be specified
in network byte order.

* The sin_zero field is not used and must be set to all zeros.

The following fields are used to specify the IPv6 socket address structure
to be translated.

* The sin6_family field must be set to AF_INET6.
 The sin6_port field is set to the a port number, in network byte order.

* The sin6_flowinfo field is used to specify the traffic class and flow label.
This field is currently not implemented.

e The in6_addr.sin6_addr field is set to an IPv6 address and must be
specified in network byte order.

* The sin6_scope_id field is used to specify the link scope for an IPv6
address as an interface index. The resolver ignores the sin6_scope_id field,
unless the input IPv6 address is a link-local address and the host
parameter is also specified.

The size, in bytes, of the buffer pointed to by sa. For an IPv4 socket
address, the salen parameter should contain a decimal 16, and for an IPv6
socket address, the salen parameter should contain a decimal 28.

On input, storage capable of holding the returned resolved host name. The
host name can be a maximum of 255 bytes for a null terminated string, for
the input socket address. If inadequate storage is specified to contain the

Chapter 7. C language application programming 195

196

hostlen

sero

servlen

resolved host name, then the resolver returns the host name up to the
storage amount specified and truncation might occur. If the host name
cannot be located, the numeric form of the host address is returned instead
of its name. However, if the NI_ NAMEREQD option is specified and no
host name is located, an error is returned.

If the specified IPv6 address is a link-local address, and the sin6_scope_id
interface index is a non-zero value, scope information is appended to the
resolved host name using the format host%scope information. The scope
information can be either the numeric form of the interface index, or the
interface name associated with the interface index.

Use the NI NUMERICSCOPE option to select which form should be
returned. The combined host name and scope information is always a
null-terminated string that is no more than 256 bytes in length. For more
information about scope information and getnameinfo() processing, see

z/0OS Communications Server: IPv6 Network and Application Design|

Guide].
This is an optional field, but if this field value is not 0, you must also
specify the hostlen parameter. Specify both the service and servien

parameters or both the host and hostlen parameters. An error occurs if both
are omitted.

A field that contains the length of the host storage used to contain the
resolved host name. The hostlen parameter value must be equal to or
greater than the length of the longest host name or of the host name and
scope information combination, plus one for the null termination character,
to be returned. The getnameinfo() call returns the host name, or host name
and scope information, up to the length specified by the hostlen parameter.
If the hostlen parameter is 0 on input, then the resolved host name is not
returned.

This is an optional field, but if the field value is not 0, you must also
specify the host parameter. Specify both the service and servlen parameters
or both the host and hostlen parameters. An error occurs if both are
omitted.

On input, storage capable of holding the returned resolved service name,
which can be a maximum of 33 bytes for a null terminated string, for the
input socket address. If inadequate storage is specified to contain the
resolved service name, the resolver returns the service name up to the
storage specified and truncation might occur. If the service name cannot be
located, or if NI_NUMERICSERV was specified in the flags parameter, then
the numeric form of the service address is returned instead of its name.

This is an optional field, but if the value is not 0, then you must also
specify the servlen parameter. Specify both the service and servien
parameters or both the host and hostlen parameters. An error occurs if both
are omitted.

A field that contains the length of the storage used to contain the returned
resolved service name (specified by the serv parameter). The servien
parameter must be equal to or greater than the length of the longest
service name to be returned, plus one for the null termination character.
The getnameinfo() call returns the service name up to the length specified
by the servlen parameter value. If the servlen value is 0 on input, the service
name information is not returned.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

This is an optional field, but if the value is not 0, you must also specify the
serv parameter. Specify both the service and servlen parameters or both the
host and hostlen parameters. An error occurs if both are omitted.

flags The parameter can be set to 0 or one of the following:

NI_NOFQDN
Return the NAME portion of the fully qualified domain name.

NI_NUMERICHOST
Return only the numeric form of host's address.

NI_NAMEREQD
Return an error if the host's name cannot be located.

NI_NUMERICSERV
Return only the numeric form of the service address.

NI_DGRAM
Indicates that the service is a datagram service. The default
behavior is to assume that the service is a stream service.

NI_NUMERICSCOPE
Return only the numeric form of the sin6_scope_id interface index,
if applicable.

getnameinfo() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EAI_AGAIN
The host address specified could not be resolved within the configured
time interval, or the resolver address space has not been started. The
request can be retried at a later time.

EAI_BADFLAGS
The flags parameter had an incorrect value.

EAI_FAIL
An unrecoverable error has occurred.

EAI_FAMILY
The address family was not recognized, or the address length was incorrect
for the specified family.

EAI_MEMORY
A memory allocation failure occurred.

EAI_NONAME
The hostname does not resolve for the supplied parameters.
NI_NAMEREQD is set and the hostname cannot be located, or both
nodename and servname were null. Or the requested address is valid but
does not have a record at the name server.

getpeername() call

The getpeername() call returns the name of the peer connected to a specified
socket.

getpeername() call format
This call has the following format:

Chapter 7. C language application programming 197

#include <manifest.h>
#include <cmanifes.h>
#include <socket.h>

#include <bsdtypes.h>
int getpeername(int s, struct sockaddr *name, int *namelen)

198

(non-reentrant programs only)
(reentrant programs only)

getpeername() call parameters
s The socket descriptor.

name A pointer to a structure that contains the IP address of the connected
socket that is filled by getpeername() before it returns. The exact format of
name is determined by the domain in which communication occurs.

The following fields are used to define the IPv4 socket address structure
for the remote socket that is connected to the local socket specified in field
.

* The sin_family field is set to AF_INET.

* The sin_port field contains the connection peer's port number.

e The in_addr.sin_addr field contains the 32-bit IPv4 Internet address, in
network byte order, of the connection peer's host machine.

e The sin_zero field is not used and is set to all zeros.

The following fields are used to define the IPv6 socket address structure
for the remote socket that is connected to the local socket specified in field
s.

* The sin6_family field is set to AF_INET®6.
* The sin6_port field contains the connection peer's port number.

* The sin6_flowinfo field contains the traffic class and flow label. The value
of this field is undefined.

* The in6_addr.sin6_addr field contains the 128-bit IPv6 Internet address, in
network byte order, of the connection peer's host machine.

* The sin6_scope_id field identifies a set of interfaces as appropriate for the
scope of the address carried in the in6_addr.sin6_addr field. For a link
scope in6_addr.sin6_addr, sin6_scope_id contains the link index for the
in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is
undefined.

namelen
A pointer to the structure that contains the size of the address structure
pointed to by name in bytes. For an IPv4 socket address the namelen
parameter should contain a decimal 16 and for an IPv6 socket address the
namelen parameter should contain a decimal 28.

getpeername() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using the name and namelen parameters as specified results in an attempt
to access storage outside of the caller’s address space.

ENOTCONN
The socket is not in the connected state.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

getsockname() call

A getsockname() call returns the current name for socket s in the sockaddr structure
pointed to by the name parameter. It returns the address of the socket that has been
bound. If the socket is not bound to an address, the call returns with family set,
and the rest of the structure set to zero. For example, an unbound IPv4 socket
causes the name to point to a sockaddr_in structure with the sin_ family field set to
AF_INET and all other fields set to zero. An unbound IPv6 socket causes the name
to point to a sockaddr_in6 structure with the sin6_family field set to AF_INET6
and all other fields set to zero.

Stream sockets are not assigned a name until after a successful call to either bind(),
connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can call
connect() without previously calling bind(). In this case, the connect() call
completes the binding necessary by assigning a port to the socket. This assignment
can be discovered with a call to getsockname().

getsockname() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>
#include <bsdtypes.h>
#include <in.h>

int getsockname(int s,

struct sockaddr *name, int *namelen)

getsockname() call parameters

s The socket descriptor.

name The address of the buffer into which getsockname() copies the name of s.
The following fields are used to define the IPv4 socket address structure
returned by the call.
* The sin_family field is set to AF_INET.

* The sin_port field contains the port number bound to this socket. If the
socket is not bound, 0 is returned.

* The in_addr.sin_addr field contains the 32-bit IPv4 Internet address, in
network byte order, of the local host machine. If the socket is not bound,
the address is INADDR_ANY.

* The sin_zero field is not used and is set to all zeros.

The following fields are used to define the IPv6 socket address structure
returned by the call.

* The sin6_family field is set to AF_INET®6.

* The sin6_port field contains the port number bound to this socket. If the
socket is not bound, 0 is returned.

* The sin6_flowinfo field contains the traffic class and flow label. The value
of this field is undefined.

* The in6_addr.sin6_addr field contains the 128-bit IPv6 Internet address, in
network byte order, of the local host machine. If the socket is not bound,
the address is the IPv6 unspecified address (in6addr_any).

Chapter 7. C language application programming 199

* The sin6_scope_id field identifies a set of interfaces as appropriate for the
scope of the address carried in the in6_addr.sin6_addr field. For a link
scope in6_addr.sin6_addr, sin6_scope_id contains the link index for the
in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is
undefined.

namelen
Must initially point to an integer that contains the size in bytes of the
storage pointed to by name. Upon return, that integer contains the size of
the data returned in the storage pointed to by name. For an IPv4 socket
address the namelen parameter contains a decimal 16 and for an IPv6
socket address the namelen parameter contains a decimal 28.

getsockname() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using the name and namelen parameters as specified results in an attempt
to access storage outside of the caller’s address space.

getsockopt(), setsockopt() calls

The getsockopt() call gets options associated with a socket; setsockopt() sets the
options.

The following options are recognized at the IPPROTO_IP level:

* Joining a multicast group

* Leaving a multicast group or leaving all sources for a given multicast group
* Setting the multicast interface

* Setting the IP time-to-live of outgoing multicast datagrams

* Looping back multicast datagrams

* Joining a source-specific multicast group

* Leaving a source-specific multicast group

* Blocking data from a given source to a given multicast group

* Unblocking a previously blocked source for a given multicast group

The following options are recognized at the IPPROTO_IPV6 level:
* Joining a multicast group

* Leaving a multicast group

* Setting the multicast interface

* Setting multicast hop limit

* Looping back multicast datagrams

* Setting unicast hop limit

* Restricting sockets to AF_INET6 sockets

* Setting source IP address selection preferences

* Retrieving source IP address selection preferences

The following options are recognized at the IPPROTO_IP and IPPROTO_IPV6
level:

200 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Joining an IPv4 or IPv6 multicast group

Leaving an IPv4 or IPv6 multicast group or leaving all sources for a given IPv4

or IPv6 multicast group

Joining an IPv4 or IPv6 source-specific multicast group

Leaving an IPv4 or IPv6 source-specific multicast group

Blocking IPv4 or IPv6 data from a given source to a given multicast group

Unblocking an IPv4 or IPv6 previously blocked source for a given multicast
group

The following options are recognized at the socket level:

Broadcasting messages (IPv4 UDP socket only)

Toggling the TCP keep-alive mechanism for a stream socket
Lingering on close if data is present

Receiving of out-of-band data

Local address reuse

Prevent infinite blocking for receive and send type functions

The following option is recognized at the TCP level (IPPROTO_TCP):

Disable sending small data amounts until acknowledgment (Nagle algorithm)

As well as checking current options, getsockopt() can return pending errors and
the type of socket.

getsockopt(), setsockopt() calls format
The format for getsockopt() is as follows:

Chapter 7. C language application programming

201

#include <manifest.h>
#include <cmanifes.h>
#include <socket.h>

#include <bsdtypes.h>
#include <bsdtime.h>

int getsockopt(int s,

#include <manifest.h>
#include <cmanifes.h>
#include <socket.h>

#include <bsdtypes.h>
#include <bsdtime.h>

int setsockopt(int s,

(non-reentrant programs only)
(reentrant programs only)

int level, int optname, char *optval, int *optlen)

The format for setsockopt() is as follows:

(non-reentrant programs only)
(reentrant programs only)

int level, int optname, char *optval, int optlen)

Note: This code sample is for getsockopt(). The setsockopt() call requires the same
parameters and declarations, except that:

* The socket function name changes; getsockopt() becomes setsockopt().

* int *optlen should be replaced by int optlen (without the asterisk).

getsockopt(), setsockopt() calls parameters

S

level

optname

The socket descriptor.

When manipulating socket options, you must specify the level at which the
option resides and the name of the option. To manipulate options at the
socket level, the level parameter must be set to SOL_SOCKET as defined in
socket.h. For TCP_NODELAY at the TCP level, the level parameter must be
set to IPPROTO_TCP. To manipulate other TCP level options or options at
any other level, such as the IP level, supply the appropriate protocol
number for the protocol controlling the option. Currently, only the
IPPROTO_IP, IPPROTO_IPV6, IPPROTO_TCP, and SOL_SOCKET levels are
supported.

The name of a specified socket option. The options that are available with
CICS TCP/IP are shown in [“Possible entries for optname” on page 203

optval and optlen

For getsockopt(), the optval and optlen parameters are used to return data
used by the particular form of the call. The optval parameter points to a
buffer that is to receive the data requested by the get command. The optlen
parameter points to the size of the buffer pointed to by the optval
parameter. It must be initially set to the size of the buffer before calling
getsockopt(). On return it is set to the actual size of the data returned.

For setsockopt(), the optval and optlen parameters are used to pass data
used by the particular set command. The optval parameter points to a
buffer that contains the data needed by the set command. The optval
parameter is optional and can be set to the NULL pointer, if data is not
needed by the command. The optlen parameter must be set to the size of
the data pointed to by optval.

For both calls, all of the socket level options except SO_LINGER expect
optval to point to an integer and optlen to be set to the size of an integer.

202 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

When the integer is nonzero, the option is enabled. When it is zero, the
option is disabled. The SO_LINGER option expects optval to point to a
linger structure as defined in socket.h.

This structure is defined in the following example:

#include <manifest.h>
struct Tlinger

{

int 1_onoff; /* option on/off */

int 1_linger; /* Tinger time */
b
The I_onoff field is set to zero if the SO_LINGER option is being disabled.
A nonzero value enables the option. The [_linger field specifies the amount
of time to linger on close. The units of I_linger are seconds.

Possible entries for optname
The following options are recognized at the IPPROTO_IP level:

Option Description

IP_ADD_MEMBERSHIP
Enables an application to join a multicast group on a specific interface. An
interface must be specified with this option. Only applications that want to
receive multicast datagrams need to join multicast groups. This is an IPv4
only socket option.

For setsockopt(), set the optval value to the structure as defined in in.h. The
ip_mreq structure contains a 4-byte IPv4 multicast address followed by a
4-byte IPv4 interface address.

This option cannot be specified with the getsockopt() call.

IP_ADD_SOURCE_MEMBERSHIP
Enables an application to join a multicast group on a specific interface and
a specific source address. An interface and a source address must be
specified with this option. Only applications that want to receive multicast
datagrams need to join source multicast groups. This socket option applies
only to IPv4.

For the setsockopt() function, set the optval value to the ip_mreq_source
structure as defined in the in.h header. The ip_mreq_source structure
contains the following:

* 4-byte IPv4 multicast address
* 4-byte IPv4 source address
* 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_BLOCK_SOURCE
Enables an application to block multicast packets that have a source
address that matches the given IPv4 source address. An interface and a
source address must be specified with this option. The specified multicast
group must be joined previously. This socket option applies only to IPv4.

For the setsockopt() function, set the optval value to the ip_mreq_source
structure as defined in the in.h header. The ip_mreq_source structure
contains the following:

* 4-byte IPv4 multicast address
* 4-byte IPv4 source address
* 4-byte IPv4 interface address

Chapter 7. C language application programming 203

This option cannot be specified with the getsockopt() function.

IP_DROP_MEMBERSHIP
Enables an application to exit a multicast group or to exit a multicast
group and drop all sources. This is an IPv4-only socket option.

For the setsockopt() function, set the optval value to the ip_mreq structure
as defined in the in.h header. The ip_mreq structure contains the following:
* 4-byte IPv4 multicast address

* 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_DROP_SOURCE_MEMBERSHIP
Enables an application to exit a source multicast group. This socket option
applies only to IPv4.

For the setsockopt() function, set the optval value to the ip_mreq_source
structure as defined in the in.h header. The ip_mreq_source structure
contains the following:

* 4-byte IPv4 multicast address
* 4-byte IPv4 source address
* 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_MULTICAST_IF
Sets or obtains the IPv4 interface address used for sending outbound
multicast datagrams from the socket application. This is an IPv4-only
socket option.

Note: Multicast datagrams can be transmitted only on one interface at a
time.

For setsockopt(), set optval to an IPv4 interface address.
For getsockopt(), optval contains an IPv4 interface address.

IP_MULTICAST_TTL
Sets or obtains the IP time-to-live of outgoing multicast datagrams. The
default value is ‘01°x, meaning that multicast is available only to the local
subnet. This is an IPv4-only socket option.

For setsockopt(), set optval to a value in the range X'00' - X'FF' specifying
the time to live (TTL). optval is a 1-byte field.

For getsockopt(), optval contains a value in the range X'00' - X'FF',
indicating TTL. optval is a 1-byte field.

IP_MULTICAST_LOOP
Controls or determines if a copy of multicast datagrams is looped back for
multicast datagrams sent to a group to which the sending host itself
belongs. The default is to loop the datagrams back. This is an IPv4-only
socket option.

For setsockopt(), set optval to 1 to enable and set to 0 to disable.

For getsockopt(), optval contains a 1 when enabled and contains a 0 when
disabled.

IP_UNBLOCK_SOURCE
Enables an application to unblock a previously blocked source for a given

204 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

IPv4 source multicast group. An interface and a source address must be
specified with this option. This socket option applies only to IPv4.

For the setsockopt() function, set the optval value to the ip_mreq_source
structure as defined in the in.h header. The ip_mreq_source structure
contains the following:

* 4-byte IPv4 multicast address
* 4-byte IPv4 source address
* 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

The following options are recognized at the IPPROTO_IPV6 level:
Option Description

IPV6_ADDR_PREFERENCES
Sets or retrieves the IPv6 address preferences to be used when selecting the
source address for the specified AF_INET6 socket. Possible values are:

IPV6_PREFER_SRC_HOME (x'00000001')
A home IPv6 address is preferred over a care-of IPv6 address.

IPV6_PREFER_SRC_COA (x'00000002'")
A care-of IPv6 address is preferred over a home IPv6 address.

IPV6_PREFER_SRC_TMP (x'00000004')
A temporary IPv6 address is preferred over a public IPv6 address.

IPV6_PREFER_SRC_PUBLIC (x'00000008'")
A public IPv6 address is preferred over a temporary IPv6 address.

IPV6_PREFER_SRC_CGA (x'00000010")
A cryptographically generated IPv6 address is preferred over a
non-cryptographically generated IPv6 address.

IPV6_PREFER_SRC_NONCGA (x'00000020")
A non-cryptographically generated IPv6 address is preferred over a
cryptographically generated IPv6 address.

For setsockopt(), contradictory flags such as IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA result in the return code -1 and the errno
EINVAL (121).

IPV6_JOIN_GROUP
Controls the reception of multicast packets and specifies that the socket
join a multicast group. This is an IPv6-only socket option.

For setsockopt(), set optval to the ipv6_mreq structure as defined in in.h.
The ipv6_mreq structure contains a 16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface index number. If the interface number
is 0, the stack chooses the local interface.

This cannot be specified with getsockopt().

IPV6_LEAVE_GROUP
Controls the reception of multicast packets and specify that the socket
leave a multicast group. This is an IPv6-only socket option.

For setsockopt(), set optval to the ipv6_mreq structure as defined in in.h.
The ipv6_mreq structure contains a 16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface index number. If the interface number
is 0, then the stack chooses the local interface.

Chapter 7. C language application programming 205

This cannot be specified with getsockopt().

IPV6_MULTICAST_HOPS
Sets or obtains the hop limit used for outgoing multicast packets. This is
an IPv6-only socket option.

For setsockopt(), set optval to a value in the range 0 - 255, specifying the
multicast hops. If optval is not specified or is set to 0, the default is 1 hop.
If optval is set to a -1, the stack default hop is used.

Rule: An application must be APF authorized to enable it to set the hop
limit value above the system defined hop limit value. The CICS application
cannot execute as APF authorized.

For getsockopt(), optval contains a value in the range 0 - 255, indicating the
number of multicast hops.

IPV6_MULTICAST_IF
Sets or obtains the index of the IPv6 interface used for sending outbound
multicast datagrams from the socket application. This is an IPv6-only
socket option.

For setsockopt(), set optval to a value that contains an IPv6 interface index.
For getsockopt(), optval contains an IPv6 interface index.

IPV6_MULTICAST_LOOP
Controls or determines whether a multicast datagram is looped back on
the outgoing interface by the IP layer for local delivery when datagrams
are sent to a group to which the sending host itself belongs. The default is
to loop multicast datagrams back. This is an IPv6-only socket option.

For setsockopt(), set optval to 1 to enable and set to 0 to disable.

For getsockopt(), optval contains a 1 when enabled and contains a 0 when
disabled.

IPV6_UNICAST_HOPS
Sets or obtains the hop limit used for outgoing unicast IPv6 packets. This
is an IPv6-only socket option.

For setsockopt(), set optval to a value in the range 0 - 255, specifying the
unicast hops. If optval is not specified or is set to 0, the default is 1 hop. If
optval is set to a -1, the stack default hop is used.

Rule: An application must be APF authorized to enable it to set the hop
limit value above the system defined hop limit value. The CICS application
cannot execute as APF authorized.

For getsockopt(), optval contains a value in the range 0 - 255 indicating the
number of unicast hops.

IPV6_V60ONLY
Sets or determines whether the socket is restricted to send and receive only
IPv6 packets. The default is to not restrict the sending and receiving of
only IPv6 packets. This is an IPv6-only socket option.

For setsockopt(), set optval to 1 to enable and set to 0 to disable.
For getsockopt(), optval contains a 1 when enabled and contains a 0 when
disabled.

The following options are recognized at the IPPROTO_IP and IPPROTO_IPV6
level:

206 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Option Description

MCAST_BLOCK_SOURCE
Enables an application to block multicast packets that have a source
address that matches the given source address. An interface index and a
source address must be specified with this option. The specified multicast
group must have been joined previously.

For the setsockopt() function, set the optval value to the group_source_req
structure as defined in the in.h header. The group_source_req structure
contains the following:

* 4-byte interface index number
* Socket address structure of the multicast address
* Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

MCAST_JOIN_GROUP
Enables an application to join a multicast group on a specific interface. An
interface index must be specified with this option. The stack chooses a
default interface if the interface index 0 is specified. Only applications that
want to receive multicast datagrams need to join multicast groups.

For the setsockopt() function, set the optval value to the group_req
structure as defined in the in.h header. The group_req structure contains
the following:

* 4-byte interface index number

* Socket address structure of the multicast address
This option cannot be specified with the getsockopt() function.

Sets the IPv4 or IPv6 multicast address and the local interface index. Use
the setsockopt() function and specify the address of the group_req
structure that controls the address and the interface index. The application
can join multiple multicast groups on a single socket and can also join the
same group on multiple interfaces on the same socket. However, there is a
maximum limit of 20 groups per single UDP socket and there is a
maximum limit of 256 groups per single RAW socket. The stack chooses a
default multicast interface if the interface index 0 is passed. The format of
the group_req structure is in the in.h header.

MCAST_JOIN_SOURCE_GROUP
Enables an application to join a multicast group on a specific interface and
a source address. An interface index and the source address must be
specified with this option. The stack chooses a default interface if the
interface index 0 is specified. Only applications that want to receive
multicast datagrams need to join source multicast groups.

For the setsockopt() function, set the optval value to the group_source_req
structure as defined in the in.h header. The group_source_req structure
contains the following:

* 4-byte interface index number
* Socket address structure of the multicast address
e Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

Chapter 7. C language application programming 207

208

MCAST_LEAVE_GROUP

Enables an application to exit a multicast group or to exit a multicast
group and drop all sources.

For the setsockopt() function, set the optval value to the group_req
structure as defined in the in.h header. The group_req structure contains
the following:

* 4-byte interface index number
* Socket address structure of the multicast address

This option cannot be specified with the getsockopt() function.

MCAST_LEAVE_SOURCE_GROUP

Enables an application to exit a source multicast group on a specific
interface and a source address.

For the setsockopt() function, set the optval value to the group_source_req
structure as defined in the in.h header. The group_source_req structure
contains the following:

* 4-byte interface index number
* Socket address structure of the multicast address

* Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

MCAST_UNBLOCK_SOURCE

Enables an application to unblock a previously blocked source for a given
multicast group. An interface index and a source address must be specified
with this option.

For the setsockopt() function, set the optval value to the group_source_req
structure as defined in the in.h header. The group_source_req structure
contains the following:

* 4-byte interface index number
* Socket address structure of the multicast address

* Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

The following options are recognized at the TCP level:

TCP_KEEPALIVE

For setsockopt, the TCP_KEEPALIVE socket option specifies a
socket-specific timer value which remains in effect until specified by
SETSOCKOPT or until the socket is closed. Valid values are in the range 0
- 2147460 seconds; if a value greater than the allowed range is specified,
2147460 seconds is used. For the getsockopt call, the TCP_KEEPALIVE
socket option returns the specific timer value in seconds in effect for the
given socket, or 0 if TCP_KEEPALIVE timing is not active. See E / O§|
[Communications Server: IP Programmer's Guide and Reference| for more
information about the socket option parameters.

TCP_NODELAY

For setsockopt, toggles the use of the Nagle algorithm (RFC 896) for all
data sent over the socket. Under most circumstances, TCP sends data when
it is presented. However, when outstanding data has not yet been
acknowledged, TCP gathers small amounts of output to be sent in a single
packet after an acknowledgment is received. For interactive applications,
such as ones that send a stream of mouse events which receive no replies,

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

this gathering of output can cause significant delays. For these types of
applications, disabling the Nagle algorithm improves response time. When
the Nagle algorithm is disabled, TCP can send small amounts of data
before the acknowledgment for previously sent data is received.

For getsockopt, returns the setting of the Nagle algorithm for the socket.
When optval is 0, the Nagle algorithm is enabled and TCP waits to send
small packets of data until the acknowledgment for the previous data is
received. When optval is not 0, the Nagle algorithm is disabled and TCP
can send small packets of data before the acknowledgment for previously
sent data is received.

The following options are recognized at the socket level:

SO_BROADCAST
Toggles the ability to broadcast messages. If this option is enabled, it
allows the application to send broadcast messages over s, if the interface
specified in the destination supports the broadcasting of packets. This
option has no meaning for stream sockets.

SO_ERROR
This cannot be specified with setsockopt(). It returns any pending error on
the socket and clears the error status. It can be used to check for
asynchronous errors on connected datagram sockets or for other
asynchronous errors (errors that are not returned explicitly by one of the
socket calls).

SO_KEEPALIVE
Sets or determines whether the keepalive mechanism periodically sends a
packet on an otherwise idle connection for a stream socket. The default is
disabled. When activated, the keepalive mechanism periodically sends a
packet on an otherwise idle connection. If the remote TCP does not

respond to the packet or to retransmissions of the packet, the connection is
closed with the error ETIMEDOUT.

SO_LINGER
Lingers on close if data is present. When this option is enabled and there is
unsent data present when close() is called, the calling application is
blocked during the close() call until the data is transmitted or the
connection has timed out. If this option is disabled, the TCP/IP address
space waits to try to send the data. Although the data transfer is usually
successful, it cannot be guaranteed, because the TCP/IP address space
waits a finite amount of time trying to send the data. The close() call
returns without blocking the caller.

Note: If you set a 0 linger time, the connection cannot close in an orderly
manner, but stops, resulting in a RESET segment being sent to the
connection partner. Also, if the aborting socket is in nonblocking mode, the
close call is treated as though no linger option had been set.

SO_OOBINLINE
Toggles reception of out-of-band data. When this option is enabled, it
causes out-of-band data to be placed in the normal data input queue as it
is received, making it available to recvfrom() without having to specify the
MSG_OOB flag in the call. When this option is disabled, it causes
out-of-band data to be placed in the priority data input queue as it is
received, making it available to recvfrom(), and only by specifying the
MSG_OOB flag in that call.

Chapter 7. C language application programming 209

210

SO_RCVTIMEO

Use this option to set or determine the maximum amount of time a
receive-type function can wait before it completes. If a receive-type
function has blocked for this much time without receiving data, it returns
with an errno set to EWOULDBLOCK. The default for this option is 0,
which indicates that a receive-type function does not time out.

When the MSG_WAITALL flag (stream sockets only) is specified, the
timeout takes precedence. The receive-type function might return the
partial count. See the explanation of the MSG_WAITALL flag parameter in
[‘recv() call parameters” on page 228 and [“recvfrom() call” on page 228

For setsockopt(), this value accepts a timeval structure; the number of
seconds and microseconds specify the limit on how long to wait for a
receive-type function to complete. The timeval structure contains the
number of seconds and microseconds specified as fullword binary
numbers. The seconds can be a value in the range 0 - 2678400 (equal to 31
days), and the microseconds can be a value in the range 0 - 1000000 (equal
to 1 second). Although the timeval structure can be specified using
mircosecond granularity, the internal TCP/IP timers used to implement
this function have a granularity of approximately 100 milliseconds.

The following receive-type functions are included:
* read()
e recv()

* recvfrom()

SO_REUSEADDR

Toggles local address reuse. When enabled, this option allows local
addresses that are already in use to be bound. This alters the normal
algorithm used in the bind() call. Normally, the system checks at connect
time to ensure that the local address and port do not have the same
foreign address and port. The error EADDRINUSE is returned if the
association already exists. If you require multiple servers to bind to the
same port and listen on INADDR_ANY or the IPv6 unspecified address
(in6baddr_any), see to the SHAREPORT option on the PORT statement in
TCPIP.PROFILE.

SO_SNDBUF

Applies to getsockopt() only. Returns the size of the data portion of the
TCP/IP send buffer in optval. The size of the data portion of the send
buffer is protocol-specific, based on the DATABUFFERPOOLSIZE statement
in the PROFILE.TCPIP data set. The value is adjusted to allow for protocol
header information.

SO_SNDTIMEO

Use this option to set or determine the maximum amount of time a
send-type function can remain blocked before it completes. If a send-type
function has blocked for this time, it returns with a partial count, or it
returns with errno set to EWOULDBLOCK if no data is sent. The default
for this option is 0, which indicates that a send-type function does not time
out.

For setsockopt(), this value accepts a timeval structure; the number of
seconds and microseconds specify the limit on how long to wait for a
send-type function to complete. The timeval structure contains the number
of seconds and microseconds specified as fullword binary numbers. The
seconds can be a value in the range 0 - 2 678 400 (equal to 31 days), and
the microseconds can be a value in the range 0 -1 000 000 (equal to 1

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

second). Although the timeval structure can be specified using mircosecond
granularity, the internal TCP/IP timers used to implement this function
have a granularity of approximately 100 milliseconds.
The following send type functions are included:
* send()
* sendto()
* write()
SO_TYPE
This is for getsockopt() only. This option returns the type of the socket. On

return, the integer pointed to by optval is set to SOCK_STREAM or
SOCK_DGRAM.

getsockopt(), setsockopt() calls return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using optval and optlen parameters results in an attempt to access storage
outside the caller’s address space.

ENOPROTOOPT
The optname parameter is unrecognized, or the level parameter is not
SOL_SOCKET.

getsourcefilter() call

Obtains a list of the IPv4 or IPv6 source addresses that comprise the source filter,
along with the current mode on a given interface and a multicast group for a
socket. The source filter can either include or exclude the set of source addresses,
depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

getsourcefilter() call format
This call has the following format:

Chapter 7. C language application programming 211

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)
#include <netinet/in.h>
int getsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen,
uint32_t =fmode, uint32_t *numsrc,
struct sockaddr_storage *slist);

212

getsourcefilter() call parameters

s The socket descriptor.

interface
The interface index of the interface.

group A pointer to either a sockaddr_in structure for IPv4 addresses or a
sockaddr_in6 structure for IPv6 addresses that holds the IP multicast
address of the group.

grouplen
The length of the sockaddr_in or sockaddr_in6 structure.

fmode A pointer to an integer that contains the filter mode on a successful return.
The value of the filter mode can be either MCAST_INCLUDE or
MCAST_EXCLUDE.

numsrc
On input, a pointer to the number of source addresses that can fit in the
array specified by the slist parameter. On output, a pointer to the total
number of source addresses in the filter.

slist A pointer to an array of IP addresses that is either included or excluded,
depending on the filter mode. If a numsrc value 0 was specified on input,
you can specify a NULL pointer.

On return, the numsrc value is always updated to be the total number of sources in
the filter; the slist pointer points to an array that holds as many source addresses
as fit, which is the minimum of the array size specified by the input numsrc value
and the total number of sources in the filter.

If the application is not aware of the size of the source list before processing, it can
make a reasonable guess (for example, 0). When the process completes, if the
numsrc is large, the operation can be repeated with a large buffer.

getsourcefilter() call return values
When successful, the value 0 is returned. When an error has occurred, the value -1
is returned and the errno value is one of the following:

EBADF
The s parameter value is not a valid socket descriptor.

EAFNOSUPPORT
The address family of the sockaddr value is not AF_INET or AF_INETé6.

EPROTOTYPE
The socket protocol type is not correct.

EADDRNOTAVAIL
The tuple consisting of socket, interface, and multicast group values does
not exist, or the specified interface address is not multicast capable.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EINVAL
The socket address family of an input parameter is not correct or the
socket specified by the s parameter already requested multicast setsockopt
options. For more information, see the [z/OS Communications Server: IP|
[Sockets Application Programming Interface Guide and Reference]

ENOMEM
Insufficient storage is available to supply the array.

ENXIO
The interface index specified by the interface parameter does not exist.

givesocket() call

The givesocket() call tells TCP/IP to make a specified socket available to a
takesocket() call issued by another program. Any connected stream socket can be
given. Typically, givesocket() is used by a parent server that obtains sockets by
means of accept() and gives them to child servers that handle one socket at a time.

To pass a socket, the parent server first calls givesocket(), passing the name of the
child server’s address space.

The parent server then uses the EXEC CICS START command to start the child
server. The START command uses the FROM data to pass the socket descriptor
and the parent’s client ID that were previously returned by the socket() and
getclientid() calls respectively.

The child server calls takesocket(), specifying the parent’s client ID and socket
descriptor.

Having issued a givesocket() and started the child server that is to take the socket,
the concurrent server uses select() to test the socket for an exception condition.
When select() reports that an exceptional condition is pending, the concurrent
server calls close() to free the socket. If the concurrent server closes the socket
before a pending exception condition is indicated, the TCP connection is
immediately reset, and the child server’s takesocket() call is unsuccessful.

When a program has issued a givesocket() call for a socket, it cannot issue any
further calls for that socket, except close().

givesocket() call format
This call has the following format:

Chapter 7. C language application programming 213

#include
#include
#include
#include

<manifest.h> (non-reentrant programs only)
<cmanifes.h> (reentrant programs only)

<bsdtypes.h>
<socket.h>

int givesocket(int s, struct clientid *clientid)

givesocket() call parameters

s The descriptor of a socket to be given to another application.

clientid A pointer to a clientid structure specifying the target program to whom the
socket is to be given. You should fill the structure as follows:

domain Set to either AF_INET (a decimal 2) or AF_INET6 (a decimal 19).

Rule: An AF_INET socket can be given only to an AF_INET
takesocket(). An AF_INET6 socket can be given only to an
AF_INET6 takesocket(). EBADF is set if the domain does not
match.

name This is the child server’s address space name, left-justified and
padded with blanks. The child server can run in the same address
space as the parent server. In this case, the field is set to the parent
server’s address space.

subtaskname
Blanks.

reserved
Binary zeros.

givesocket() call return Values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor, the socket has already
been given, or the socket domain is not AF_INET or AF_INETS6.

EBUSY
listen() has been called for the socket.

EFAULT
Using the clientid parameter as specified results in an attempt to access
storage outside the caller’s address space.

EINVAL
The clientid parameter does not specify a valid client identifier.

ENOTCONN
The socket is not connected.

EOPNOTSUPP
The socket type is not SOCK_STREAM.

if_freenameindex() call

The if_freenameindex() function is used to release the array storage obtained by
the if_nameindex() function.

214 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

if_freenameindex() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)
#include <if.h>

void if_freenameindex(struct if_nameindex #*ptr)

if_freenameindex() call parameters

ptr A pointer that contains the address of the array of structures returned by
the if_nameindex() function.

if_freenameindex() call return values
No return value is defined.

if_indextoname() call

The if_indextoname() function returns an interface name when given an interface
index.

if_indextoname() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)
#include <if.h>

char * if_indextoname(unsigned int ifindex, char =*ifname)

if_indextoname() call parameters

ifindex
Storage that contains an interface index.

ifname
A bulffer that contain the name of the index value specified in the ifindex
parameter.

if_indextoname() call return values
Possible return values include:

EINVAL
The ifindex parameter was zero, or the ifname parameter was NULL, or
both.

ENOMEM
Insufficient storage is available to obtain the information for the interface
name.

ENXIO
The ifindex does not yield an interface name.

if_nameindex() call

The if_nameindex() function is used to obtain a list of interface names and their
corresponding indices. The if_nameindex() function is not supported by IPv4-only
stacks. However, if a mixture of IPv4-only and IPv4 and IPv6 stacks are active
under CINET, CINET assigns a single interface index to the IPv4-only stack. This

Chapter 7. C language application programming 215

allows applications using IPv6 sockets to target an IPv4-only stack but does not
allow the selection of a particular interface on an IPv4-only stack. Not all interfaces
are returned in the output from if nameindex(). VIPA interfaces are not returned.
Interfaces that have never been activated are not returned.

if_nameindex() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)

#include <if.h>

struct if_nameindex * if_nameindex(void)

if_nameindex() call parameters

There are no input parameters as the if_nameindex() function returns a pointer to
an array of structures that contains information about each system interface. Check
the if_nameindex structure in if.h for the format of the returned data.

if_nameindex() call return values

When successful, if_nameindex() returns a pointer to an array of if nameindex
structures. Upon failure, if nameindex() returns NULL and sets errno to the
following:

ENOMEM
Insufficient storage is available to supply the array.

if_nametoindex() call

The if_nametoindex() function returns an interface index when given an interface
name.

if_nametoindex() call format
This call has the following format:

216 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

#include
#include
#include

unsigned

<manifest.h> (non-reentrant programs only)
<cmanfies.h> (reentrant programs only)

<if.h>

int if_nametoindex(const char * ifname)

if_nametoindex() call parameters

ifname
A pointer to null terminated storage that contains the interface name. If the
interface specified by ifname does not exist then 0 is returned.

if_nametoindex() call return values

When successful, if_nametoindex() returns the interface index corresponding to the
interface name ifname. Upon failure, if_nametoindex() returns zero and sets errno to
one of the following:

EINVAL
A parameter was not specified. The ifname parameter was NULL.

ENOMEM
Insufficient storage is available to obtain the information for the interface
name.

ENXIO
The specified interface name provided in the ifname parameter does not
exist.

inet_ntop() call

Converts numeric IP addresses to their printable form.

inet_ntop() call format
This call has the following format:

Chapter 7. C language application programming 217

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)
#include <inet.h>

const char * inet _ntop(int af, const void *src, char *dst, socklen_t size)

inet_ntop() call parameters
af The address family of the IP address being converted specified as AF_INET

or AF_INETS6.

src A pointer to the IP address, in network byte order, to be converted to
presentable form.

dst A pointer to storage used to contain the converted IP address.

size The size of the IP address pointed to by the src parameter.

inet_ntop() call return values

If successful, inet_ntop() returns a pointer to the buffer that contains the converted
address.

If unsuccessful, inet_ntop() returns NULL and sets errno to one of the following
values:

EAFNOSUPPORT
The address family specified in af is unsupported.

ENOSPC
The destination buffer size is too small.

inet_pton() call

Converts IP addresses from presentable text form to numeric form.

inet_pton() call format
This call has the following format:

218 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)

#include <inet.h>

int inet_pton(int af, const char *src, void xdst)

inet_pton() call parameters
af The address family of the IP address being converted, specified as
AF_INET or AF_INET6.

src A pointer to the IP address, in presentable text form, to be converted to
numeric form.

dst A pointer to storage used to contain the converted IP address. The
converted address is in numeric form and network byte order.

inet_pton() call return values
If successful, inet_pton() returns 1 and stores the binary form of the Internet
address in the buffer pointed to by dst.

If unsuccessful because the input buffer pointed to by src is not a valid string,
inet_pton() returns 0.

If unsuccessful because the af argument is unknown, inet_pton() returns -1 and sets
errno to the following value:

EAFNOSUPPORT
The address family specified in af is unsupported.

inet6_is_srcaddr() call

The inet6_is_srcaddr() call tests whether the input IP address matches an IP
address in the node that conforms to all IPV6_ADDR_PREFERENCES flags
specified in the call. You can use this call with IPv6 addresses or with
IPv4-mapped IPv6 addresses.

You can use this call to test local IP addresses to verify that these addresses have
the characteristics required by your application.

Tip: See RFC 5014 [Pv6 Socket API for Source Address Selection for more information
about the inet6_is_srcaddr() call. See |Appendix F, “Related protocol specifications,”’

for information about accessing RFCs.

inet6_is_srcaddr() call format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <in.h>

#include <netdb.h>

short inet6_is_srcaddr(struct sockaddr_in6 *name, uint32_t flags)

inet6_is_srcaddr() parameters

name Specifies the AF_INET6 socket address structure for the address that is to
be tested.

Requirement: You must specify an AF_INET6 address. You can specify an
IPv6 address or an IPv4-mapped IPv6 address. The format of the name

Chapter 7. C language application programming 219

220

buffer is expected to be sockaddr_in6 as defined in the header file in.h. The

format of the structure is shown in [Table 20 on page 167}

The IPv6 socket address structure specifies the following fields:

sin6_family

This field must be set to AF_INET6.

sin6_port

A halfword binary field. This field is ignored by inet6_is_srcaddr()

processing.

sin6_flowinfo

A fullword binary field. This field is ignored by inet6_is_srcaddr()

processing.

in6_addr.sin6_addr

A 16-byte binary field that is set to the 128-bit IPv6 Internet
address (network byte order) to be tested.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6

format.

sin6_scope_id

A fullword binary field that identifies a set of interfaces as being
appropriate for the scope of the address specified in the
in6_addr.sin6_addr field. The value 0 indicates that the sin6_scope_id
tield does not identify the set of interfaces to be used.

Requirements: The sin6_scope_id value must be nonzero if the
address is a link-local address. For all other address scopes,

sin6_scope_id must be set to 0.

flags A fullword binary field containing one or more
IPV6_ADDR_PREFERENCES flags. The following table defines the
valid IPV6_ADDR_PREFERENCES flags.

Flag name

Binary value

Decimal value

Description

IPV6_PREFER_SRC_HOME

x'00000001'

1

Test whether the
input IP address
is a home
address.!

IPV6_PREFER_SRC_COA

x'00000002'

Test whether the
input IP address
is a care-of
address.?

IPV6_PREFER_SRC_TMP

x'00000004'

Test whether the
input IP address
is a temporary
address.

IPV6_PREFER_SRC_PUBLIC

x'00000008'

Test whether the
input IP address
is a public
address.

IPV6_PREFER_SRC_CGA

x'00000010'

16

Test whether the
input IP address
is
cryptographically
generated.’

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Flag name Binary value Decimal value | Description

IPV6_PREFER_SRC_NONCGA x'00000020 32 Test whether the
input IP address

is not

generated. '

cryptographically

Note:
1.
2.

Any valid IP address that is known to the stack satisfies this flag.

z/0S Communications Server does not support this type of address. The call always

returns FALSE when this flag is specified with a valid IP address that is known to the

stack.

Tips:

* The samples SEZAINST(EZACOBOL) and SEZAINST(CBLOCK)

contain mappings for these flags.
* Some of these flags are contradictory. For example:

— The flag IPV6_PREFER_SRC_HOME contradicts the flag
IPV6_PREFER_SRC_COA.

— The flag IPV6_PREFER_SRC_CGA contradicts the flag
IPV6_PREFER_SRC_NONCGA.

— The flag IPV6_PREFER_SRC_TMP contradicts the flags
IPV6_PREFER_SRC_PUBLIC.

Result: If you specify contradictory flags in the call, the result is

FALSE.

inet6_is_srcaddr() return values
Value description:

0

1

FALSE
The call was successful, and the result is FALSE. The input AF_INET6

address corresponds to an IP address on the node, but does not conform to

one or more IPV6_ADDR_PREFERENCES flags specified in the call.
TRUE

The call was successful, and the result is TRUE. The input AF_INET6
address corresponds to an IP address on the node, and conforms to all
IPV6_ADDR_PREFERENCES flags specified in the call.

Check ERRNO for an error code.

See [Appendix B, “Return codes,” on page 449| for information about
ERRNO values.

initapi() call

The initapi() call connects your application to the TCP/IP interface.

initapi() call format
This call has the following format:

Chapter 7. C language application programming

221

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
int initapi(int max_sock, char *subtaskid)

222

initapi() call parameters

max_sock
The maximum number of sockets requested. This value cannot exceed
2000. The minimum value is 50.

subtaskid
A unique 8-character ID, which should be the 4-byte packed EIBTASKN
value in the EIB plus three character 0's and a unique displayable
character.

Using the letter L as the last character in the subtask parameter causes the
tasking mechanism to assume that the CICS transaction is a listener. The
task mechanism schedules the transaction using a non-reusable subtask by
way of MVS attach processing when OTE=NO. This value has no effect
when OTE=YES.

initapi() call return values
A positive value indicates success; a value of -1 indicates an error. To determine
which error occurred, check the errno global variable, which is set to a return code.

ioctl() call

The ioctl() call controls the operating characteristics of sockets. This call can issue a
command to do any of the following:

* Set or clear nonblocking input and output for a socket.
* Get the number of immediately readable bytes for the socket.

* Query whether the current location in the data input is pointing to out-of-band
data.

* Get the IPv6 home interface addresses.

* Get the network interface address.

* Get the network interface broadcast address.
* Get the network interface configuration.

* Get the network interface names and indices.

* Control Application Transparent Transport Layer Security (AT-TLS) for a
connection

* Retrieve connection routing information and partner security credentials

ioctl() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>

#include <ioctl.h>

#include <ezbpinfc.h>

#include <ezbztlsc.h>

#include <ezbyaplc.h>

#include <rtrouteh.h>

#include <if.h>

int ioct1(int s, unsigned long cmd,
char *arg)

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

ioctl() call parameters

s The socket descriptor.

cmd and arg
cmd is the command to perform; arg is a pointer to the data associated with
cmd. The following are valid ioctl() commands:

FIONBIO
Sets or clears nonblocking input and output for a socket. arg is a
pointer to an integer. If the integer is 0, the socket is in
nonblocking mode. Otherwise, the socket is set for nonblocking
input/output.

FIONREAD
Gets the number of immediately readable bytes for the socket. arg
is a pointer to an integer. Sets the value of the integer to the
number of immediately readable characters for the socket.

SIOCATMARK
Queries whether the current location in the data input is pointing
to out-of-band data. The arg parameter is a pointer to an integer.
The parameter sets the argument to 1 if the socket points to a mark
in the data stream for out-of-band data. Otherwise, it sets the
argument to 0.

SIOCGHOMEIF6
Get the IPv6 home interfaces. The arg parameter is a pointer to a
NetConfHdr structure, as defined in ioctLh. A pointer to a Homelf
structure that contains a list of home interfaces is returned in the
NetConfHdr pointed to by the argument. To request OSM interfaces
the application must have READ authorization to the
EZB.OSM.sysname.tcpname resource.

SIOCGIFADDR
Gets the network interface address. The arg parameter is a pointer
to an ifreq structure, as defined in if.h. The interface address is
returned in the argument.

SIOCGIFBRDADDR
Gets the network interface broadcast address. The arg parameter is
a pointer to an ifreq structure, as defined in if.h. The interface
broadcast address is returned in the argument.

SIOCGIFCONF
Gets the network interface configuration. The arg parameter is a
pointer to an ifconf structure, as defined in if.h. The interface
configuration is returned in the argument.

SIOCGIFDSTADDR
Gets the network interface destination address. The arg parameter
is a pointer to an ifreq structure, as defined in if.h. The interface
destination (point-to-point) address is returned in the argument.

SIOCGIFMTU
Gets the IPv4 network interface MTU (maximum transmission
unit). The arg parameter is a pointer to an ifreq structure, as
defined in the if.h file. The interface MTU is returned in the
argument.

SIOCGPARTNERINFO
Provides an interface for an application to retrieve security

Chapter 7. C language application programming 223

224

information about its partner. The arg parameter is a pointer to a
PartnerInfo structure, as defined by the EZBPINFC header file in
the SEZANMAC dataset. For more information about using the
SIOCGPARTNERINFO ioctl, see [z/0OS Communications Server: IP|
Programmer's Guide and Reference]

Restriction: The SIOCGPARTNERINFO ioctl command is not
called by the IBM listener.

Tip: If the partner end-point is the IBM Listener or a child server
and partner security credentials were requested, then only the
CICS address space information is returned on the
SIOCGPARTNERINFO ioctl invocation.

SIOCSAPPLDATA

Enables an application to associate 40 bytes of user-specified
application data with a TCP connection. Identifies socket endpoints
in tools such as Netstat, SMF, or network management
applications.

Requirement: When you issue the SSIOCSAPPLDATA ioctl()
function, ensure that the arg parameter contains a SetApplData
structure as defined by the EZBYAPLC header file in the
SEZANMAC dataset. See [z/OS Communications Server: IP|
[Programmer's Guide and Reference| for more information about
programming the SIOCSAPPLDATA IOCTL.

SetAD_buffer
The user-defined application data comprises 40 bytes of
data that is used to identify the TCP connection with the IP
CICS socket API sockets application. The application data
can be displayed in the following ways:

* By requesting Netstat reports. The information is
displayed conditionally using the modifier APPLDATA
on the ALLC/-a and COnn /-c reports and
unconditionally on the ALL/-A report. See the Netstat
ALL/-A report, Netstat ALLConn/-a report, and Netstat
COnn/-c report in|z/OS Communications Server: IP|
[System Administrator's Commands| for more information
about Netstat reports.

e In the SMF 119 TCP connection termination record. See
TCP connection termination record (subtype 2)/in |z/OS9|
Communications Server: IP Programmer's Guide and|
Reference| for more information about the application
data written on the SMF 119 record.

* By network management applications. See |NetworE|
management interfaces|in |z/0OS Communications Server|
[P Programmer's Guide and Reference| for more
information about application data.

Applications using this ioctl need to consider the following
guidelines:

* The application is responsible for documenting the
content, format, and meaning of the ApplData strings
that it associates with sockets it owns.

* The application should uniquely identify itself with
printable EBCDIC characters at the beginning of the
string. Strings beginning with 3-character IBM product

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

identifiers, such as EZA or EZB, are reserved for IBM
use. IBM product identifiers begin with a letter in the
range A - L.

* Printable EBCDIC characters should be used for the
entire string to enable searching with Netstat filters.

Tip: Separate application data elements with a blank for
easier reading.

SIOCSPARTNERINFO
The SIOCSPARTNERINFO ioctl sets an indicator to retrieve the
partner security credentials during connection setup and saves the
information, enabling an application to issue a
SIOCGPARTNERINFO ioctl without suspending the application, or
at least minimizing the time to retrieve the information. The
SIOCSPARTNERINFO ioctl must be issued prior to the
SIOCGPARTNERINFO ioctl. The arg parameter is a pointer to a
constant value, PI_REQTYPE_SET_PARTNERDATA, as defined by
the EZBPINFC header file in the SEZANMAC dataset. For more
information about using the [SIOCSPARTNERINFO]ioctl, see |z/ OS|
[Communications Server: IP Programmer's Guide and Reference]

Restriction: The SIOCSPARTNERINFO ioctl command is not called
by the IBM listener.

SIOCTTLSCTL
Controls Application Transparent Transport Layer Security
(AT-TLS) for the connection. The arg parameter is a pointer to a
TTLS_IOCTL structure, as defined in ezbztlsc.h. If a partner
certificate is requested, the TTLS_IOCTL must include a pointer to
additional buffer space and the length of that buffer. Information is
returned in the TTLS_IOCTL structure. If a partner certificate is
requested and one is available, it is returned in the additional
buffer space. For more usage information, see |z / O§|
[Communications Server: IP Programmer's Guide and Reference.

ioctl() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EINVAL
The request is not correct or not supported.

listen() call
The listen() call performs two tasks for a specified stream socket:
1. Completes the necessary binding if bind() has not been called for the socket.

2. Creates a connection request queue of a specified length to queue incoming
connection requests.

The listen() call indicates a readiness to accept client connection requests. It

transforms an active socket into a passive socket. A passive socket can never be
used as an active socket to initiate connection requests.

Chapter 7. C language application programming 225

Calling listen() is the third of four steps that a server performs to accept a
connection. It is called after allocating a stream socket with socket(), and after
binding a name to the socket with bind(). It must be called before calling accept()
to accept a connection request from a client.

listen() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int listen(int s, int backlog)

listen() call parameters
s The socket descriptor.

backlog Defines the maximum length for the queue of pending connections.

Note: The backlog value specified on the LISTEN call cannot be greater
than the value configured by the SOMAXCONN statement in the stack's
TCPIP PROFILE (default=10); no error is returned if a greater backlog value
is requested. If you want a larger backlog, update the SOMAXCONN
statement. See the [z/OS Communications Server: IP Configuration|

for details.

listen() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EOPNOTSUPP
The s parameter is not a socket descriptor that supports the listen() call.

read() call

The read() call reads data on a specified connected socket.

Stream sockets act like streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and
application A sends 1000 bytes, each call to this function can return 1 byte, or 10
bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should
place this call in a loop, which should repeat until all data has been received.

read() call format
This call has the following format:

226 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

int read(int s, char *buf, int len)

read() call parameters

s The socket descriptor.
buf The pointer to the buffer that receives the data.
len The length in bytes of the buffer pointed to by the buf parameter.

read() call return values

If successful, the number of bytes copied into the buffer is returned. The value 0
indicates that the connection is closed. The value -1 indicates an error. To
determine which error occurred, check the errno global variable, which is set to a
return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters results in an attempt to access storage
outside the caller’s address space.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

recv() call
The recv() call receives data on a specified socket.

If a datagram packet is too long to fit in the supplied buffer, datagram sockets
discard extra bytes. Stream sockets act like streams of information with no
boundaries separating data. For example, if applications A and B are connected
with a stream socket and application A sends 1000 bytes, each call to this function
can return 1 byte, or 10 bytes, or up to 1000 bytes. Therefore, applications using
stream sockets should place this call in a loop, calling this function until all data
has been received.

recv() call format
This call has the following format:

Chapter 7. C language application programming 227

#include <manifest.h>
#include <cmanifes.h>
#include <bsdtypes.h>
#include <socket.h>

(non-reentrant programs only)
(reentrant programs only)

int recvfrom(int s, char =buf,

int len, int flags)

recv() call parameters

s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags A parameter that can be set to 0, MSG_OOB, MSG_PEEK, or
MSG_WAITALL.

MSG_OOB
Receive out-of-band (OOB) data (stream sockets only). Even if the
OOB flag is not set, out-of-band data can be read if the
SO_OOBINLINE option is set for the socket.

MSG_PEEK
Peek at the data, but do not destroy the data. If the peek flag is set,
the next receive operation reads the same data.

MSG_WAITALL
Requests that the function block until the full amount of data
requested can be returned (stream sockets only). The function
might return a smaller amount of data if the connection is closed,
an error is pending, or if the SO_RCVTIMEO value is set and the
timer expired for the socket.

recv() call return values

If successful, the length of the message or datagram in bytes is returned. The value
0 indicates that the connection is closed. The value -1 indicates an error. To
determine which error occurred, check the errno global variable, which is set to a
return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters results in an attempt to access storage
outside the caller’s address space.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

recvfrom() call

The recvfrom() call receives data on a specified socket. The recvfrom() call applies
to any datagram socket, whether connected or unconnected.

The call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard extra bytes.
Stream sockets act like streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and
application A sends 1000 bytes, each call to this function can return 1 byte, or 10
bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should
place this call in a loop, calling this function until all data has been received.

228 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

recvfrom() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>
#include <socket.h>

int recvfrom(int s, char =buf,

int len, int flags,

struct sockaddr *name, int *namelen)

recvfrom() call parameters

S

buf

len

flags

name

The socket descriptor.
The pointer to the buffer that receives the data.
The length in bytes of the buffer pointed to by the buf parameter.

A parameter that can be set to 0, MSG_OOB, MSG_PEEK, or
MSG_WAITALL.

MSG_OOB
Receive out-of-band data (stream sockets only). Even if the OOB
flag is not set, out-of-band data can be read if the SO-OOBINLINE
option is set for the socket.

MSG_PEEK
Peek at the data, but do not destroy data. If the peek flag is set, the
next receive operation reads the same data.

MSG_WAITALL
Requests that the function block until the full amount of data
requested can be returned (stream sockets only). The function
might return a smaller amount of data if the connection is closed,
an error is pending, or if the SO_RCVTIMEO value is set and the
timer expired for the socket.

A pointer to a socket address structure from which data is received. If name
is a nonzero value, the source address is returned.

The following fields are used to define the IPv4 socket address structure of
the socket that sent the data.
sin_family

This field is set to AF_INET.

sin_port
Contains the port number of the sending socket.

in_addr.sin_addr
Contains the 32-bit IPv4 Internet address, in network byte order, of
the sending socket.

sin_zero
This field is not used and is set to all zeros.

The following fields are used to define the IPv6 socket address structure of
the socket that sent the data.

sin6_family
This field is set to AF_INETS6.

Chapter 7. C language application programming 229

230

sin6_port
Contains the port number bound of the sending socket.

sin6_flowinfo
Contains the traffic class and flow label. The value of this field is
undefined.

in6_addr.sin6_addr
Contains the 128-bit IPv6 Internet address, in network byte order,
of the sending socket.

sin6_scope_id
Identifies a set of interfaces as appropriate for the scope of the
address carried in the in6_addr.sin6_addr field. For a link scope
in6_addr.sinb_addr, sin6_scope_id contains the link index for the
in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is
undefined.

namelen
A pointer to an integer that contains the size of name in bytes. For an IPv4
socket address, the namelen parameter contains a decimal 16. For an IPv6
socket address, the namelen parameter contains a decimal 28.

recvfrom() call return values

If successful, the length of the message or datagram in bytes is returned. The value
0 indicates that the connection is closed. The value -1 indicates an error. To
determine which error occurred, check the errno global variable, which is set to a
return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters results in an attempt to access storage
outside the caller’s address space.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

select() call

The select() call is useful in processes where multiple operations can occur, and it
is necessary for the program to be able to wait on one or several of the operations
to complete.

For example, consider a program that issues a read() to multiple sockets whose
blocking mode is set. Because the socket blocks on a read() call, only one socket
could be read at a time. Setting the sockets nonblocking solves this problem, but
requires polling each socket repeatedly until data became available. The select() call
allows you to test several sockets and to execute a subsequent 1/O call only when
one of the tested sockets is ready, thereby ensuring that the I/O call does not
block.

Defining which sockets to test
The select() call monitors for read operations, write operations, and exception
operations:

* When a socket is ready to read, do one of the following:

— A buffer for the specified sockets contains input data. If input data is
available for a given socket, a read operation on that socket does not block.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

— A connection has been requested on that socket.

* When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write
operation on that socket does not block.

* When an exception condition has occurred on a specified socket, it is an
indication that a takesocket() has occurred for that socket.

Each socket is represented by a bit in a bit string. The bit strings are contained in
32-bit fullwords, numbered from right-to-left. The right-most bit represents socket
0, the leftmost bit represents socket 31, and so on. Thus, if the process uses 32 (or
less) sockets, the bit string is one word long; if the process uses up to 64 sockets,
the bit string is two words long, etc. You define which sockets to test by turning on
the corresponding bit in the bit string.

Read operations calls:

Read operations include accept(), read(), recv(), or recvfrom() calls. A socket is
ready to be read when data has been received for it, or when a connection request
has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in READFDS to ‘1" before issuing the select() call. When the select() call returns,
the corresponding bits in the READFDS indicate sockets ready for reading.

Write operations calls:
A socket is selected for writing (ready to be written) when:

* TCP/IP can accept additional outgoing data.
* A connection request is received in response to an accept() call.

* The socket is marked nonblocking, and a connect() cannot be completed
immediately. In this case, ERRNO contains a value of 36 (EINPROGRESS). This
is not an error condition.

A call to write(), send(), or sendto() blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a select() call to ensure that the socket is ready for writing.
After a socket is selected for write(), the program can determine the amount of
TCP/IP buffer space available by issuing the getsockopt() call with the
SO_SNDBUF option.

To test whether any of several sockets is ready for writing, set the WRITEFDS bits
representing those sockets to 1 before issuing the select() call. When the select() call
returns, the corresponding bits in the WRITEFDS indicate sockets ready for
writing.

Exception operations for the select() call:
For each socket to be tested, the select() call can check for an existing exception
condition. Two exception conditions are supported:

* The calling program (concurrent server) has issued a givesocket() command and
the target child server has successfully issued the takesocket() call. When this
condition is selected, the calling program (concurrent server) should issue close()
to dissociate itself from the socket.

e A socket has received out-of-band data. On this condition, a READ returns the
out-of-band data ahead of program data.

Chapter 7. C language application programming 231

#include
#include
#include
#include
#include

To test whether any of several sockets have an exception condition, set the
EXCEPTFDS bits representing those sockets to 1. When the select() call returns, the
corresponding bits in the EXCEPTFDS indicate sockets with exception conditions.

NFDS parameter for the select() call:

The select() call tests each bit in each string before returning results. For efficiency,
the NFDS parameter can be used to specify the number of socket descriptors that
need to be tested for any event type. The select() call tests only bits in the range 0
through the (NFDS-1) value.

TIMEOUT parameter for the select() call:
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the select() call returns, and RETCODE is set to 0.

select() call format
This call has the following format:

<manifest.h> (non-reentrant programs only)
<cmanifes.h> (reentrant programs only)

<socket.h>
<bsdtypes.h>
<bsdtime.h>

int select(int nfds, fd_set *readfds,
fd_set *writefds, fd_set *exceptfds,
struct timeval =*timeout)

select() call parameters
nfds ~ The number of socket descriptors to check.
readfds The pointer to a bit mask of descriptors to check for reading.

writefds
The pointer to a bit mask of descriptors to check for writing.

exceptfds
The pointer to a bit mask of descriptors to be checked for exceptional
pending conditions.

timeout
The pointer to the time to wait for the select() call to complete. If timeout is
a NULL pointer, a zero-valued timeval structure is substituted in the call.
The zero-valued timeval structure causes TCP/IP stacks to poll the sockets
and return immediately to the caller.

select() call return values

A positive value represents the total number of ready sockets in all bit masks. The
value 0 indicates an expired time limit. The three bit masks indicate status (with
one bit for each socket). A bit 1 indicates that the respective socket is ready; a bit 0
indicates that the respective socket is not ready. You can use the macro FD_ISSET '
with each socket to test its status.

The value -1 indicates an error. To determine which error occurred, check the errno
global variable, which is set to a return code. Possible codes include:

10. See |z/OS Communications Server: IP Programmer's Guide and Reference| for details.

232 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EBADF
One of the bit masks specified an incorrect socket. FD_ZERO was probably
not called to clear the bit mask before the sockets were set.

EFAULT
One of the bit masks pointed to a value outside the caller’s address space.

EINVAL
One of the fields in the timeval structure is not correct.

send() call

The send() call sends data on an already-connected socket.

The select() call can be used prior to issuing the send() call to determine when it is
possible to send more data.

Stream sockets act like streams of information with no boundaries separating data.
For example, if an application is required to send 1000 bytes, each call to this
function can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore,
applications using stream sockets should place this call in a loop, calling this
function until all data has been sent.

send() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>

#include <socket.h>

int send(int s, char =msg,
int len, int flags)

send() call parameters

s The socket descriptor.
msg The pointer to the buffer that contains the message to transmit.
len The length of the message pointed to by the buf parameter.

flags The flags parameter is set by specifying one or more of the following flags.
If more than one flag is specified, the logical OR operator (|) must be used
to separate them.

MSG_OOB
Sends out-of-band data.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the
operation. This is usually used only by diagnostic or routing
programs.

send() call return values

A positive value represents the number of bytes sent. The value -1 indicates locally
detected errors. When datagram sockets are specified, no indication of failure to
deliver is implicit in a send() routine.

To determine which error occurred, check the errno global variable, which is set to
a return code. Possible codes include:

Chapter 7. C language application programming 233

#include
#include
#include
#include

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters results in an attempt to access storage
outside the caller’s address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
s is in nonblocking mode and data is not available to read.

sendto() call

The sendto() call sends data to the address specified in the call.

Stream sockets act like streams of information with no boundaries separating data.
For example, if an application wishes to send 1000 bytes, each call to this function
can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using
stream sockets should place this call in a loop, calling this function until all data
has been sent.

sendto() call format
This call has the following format:

<manifest.h> (non-reentrant programs only)
<cmanifes.h> (reentrant programs only)
<bsdtypes.h>

int sendto(int s, char *msg,

int len, int flags,

struct sockaddr *to, int tolen)

sendto() call parameters

s The socket descriptor.

msg The pointer to the buffer that contains the message to transmit.

len The length of the message in the buffer pointed to by the msg parameter.
flags A parameter that can be set to 0 or MSG_DONTROUTE.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the
operation. This is usually used only by diagnostic or routing
programs.

to The address of the target socket address structure.

The following fields are used to define the IPv4 socket address structure
the data is sent to.
sin_family

Must be set to AF_INET.

sin_port
Set to the port number bound to the socket.

in_addr.sin_addr
Set to the 32-bit IPv4 Internet address in network byte order.

234 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

sin_zero
This field is not used and must be set to all zeros.

The following fields are used to specify the IPv6 socket address structure
the data is sent to.

sin6_family
Must be set to AF_INET®6.

sin6_port
Set to the port number bound to the socket.

sin6_flowinfo
Used to specify the traffic class and flow label. This field must be
set to zero.

in6_addr.sin6_addr
Set to the 128-bit IPv6 Internet address in network byte order.

sin6_scope_id
Used to identify a set of interfaces as appropriate for the scope of
the address carried in the in6_addr.sin6_addr field. A value of zero
indicates the sin6_scope_id does not identify the set of interfaces to
be used, and might be specified for any address types and scopes.
For a link scope in6_addr.sin6_addr, sin6_scope_id might specify a
link index which identifies a set of interfaces. For all other address
scopes, sin6_scope_id is undefined.

tolen The size of the structure pointed to by fo. For an IPv4 socket address, the
tolen parameter contains a decimal 16. For an IPv6 socket address, the tolen
parameter contains a decimal 28.

sendto() call return values

If positive, indicates the number of bytes sent. The value -1 indicates an error. No
indication of failure to deliver is implied in the return value of this call when used
with datagram sockets.

To determine which error occurred, check the errno global variable, which is set to
a return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters results in an attempt to access storage
outside the caller’s address space.

EINVAL
tolen is not the size of a valid address for the specified address family.

EMSGSIZE
The message was too big to be sent as a single datagram. The default is
large-envelope-size.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

Chapter 7. C language application programming 235

setipv4sourcefilter() call

Sets a list of the IPv4 source addresses that comprise the source filter, along with
the current mode on a given interface and a multicast group for a socket. The
source filter can either include or exclude the set of source addresses, depending
on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

setipv4sourcefilter() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <netinet/in.h>

int setipvdsourcefilter (int s, struct in_addr interface,
struct in_addr group, uint32_t fimode,
uint32_t numsrc, struct in_addr *slist);

setipv4dsourcefilter() call parameters
s The socket descriptor.

interface
The local IP address of the interface.

group The IP multicast address of the group.

fmode An integer that contains the filter mode to be set. The value of the filter
mode can be MCAST INCLUDE or MCAST _EXCLUDE.

numsrc
The number of source addresses in the slist array.

slist A pointer to an array of IP addresses that is either included or excluded,
depending on the filter mode. If the numsrc value 0 was specified on input,
you can specify a NULL pointer. A maximum of 64 IP addresses can be
specified.

setipv4sourcefilter() call return values
When successful, the value 0 is returned. When an error occurs, the value -1 is
returned and the errno value is one of the following:

EBADF
The s parameter value is not a valid socket descriptor

EINVAL

The interface or group parameter value is not a valid IPv4 address, the
specified fmode value is not valid, or the socket s has already requested
multicast setsockopt options. For more information, see |Z / Oél
Communications Server: IP Sockets Application Programming Interface|
Guide and Reference|

EPROTOTYPE
The socket protocol type is not correct.

ENOBUFS
The number of source addresses exceeds the allowed limit.

ENOMEM
Insufficient storage is available to supply the array.

EADDRNOTAVAIL
The specified interface address is incorrect for this host, or the specified
interface address is not multicast capable.

236 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

setsockopt() call
See [“getsockopt(), setsockopt() calls” on page 200

setsourcefilter() call

Sets a list of the IPv4 or IPv6 source addresses that comprise the source filter,
along with the current mode on a given interface and a multicast group for a
socket. The source filter can either include or exclude the set of source addresses,
depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

setsourcefilter() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanfies.h> (reentrant programs only)
#include <netinet/in.h>
int setsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen,
uint32_t fmode, uint32_t numsrc,
struct sockaddr_storage *slist);

setsourcefilter() call parameters
s The socket descriptor.

interface
The interface index of the interface.

group A pointer to either a sockaddr_in structure for IPv4 addresses or a
sockaddr_in6 structure for IPv6 addresses. The pointer holds the IP
multicast address of the group.

grouplen
The length of the sockaddr_in or sockaddr_in6 structure.

fmode An integer that contains the filter mode to be set. The value of the filter
mode can be either MCAST_INCLUDE or MCAST_EXCLUDE.

numsrc
An integer that specifies the number of source addresses that are provided
in the array that is pointed to by the slist parameter.

slist A pointer to an array of IP addresses that is either included or excluded,
depending on the filter mode. If the numsrc value 0 was specified on input,
you can specify a NULL pointer.

setsourcefilter() call return values
When successful, the value 0 is returned. When an error occurs, the value -1 is
returned and the errno value is one of the following:

EBADF
The s parameter value is not a valid socket descriptor.

EAFNOSUPPORT
The address family of the input sockaddr value is not AF_INET or
AF_INETS6.

EINVAL
The socket address family of an input parameter is not correct, the
specified fmode value is not correct, or the socket specified by the s
parameter already requested multicast setsockopt options. See

Chapter 7. C language application programming 237

Communications Server: IP Sockets Application Programming Interface
[Guide and Reference| for more information.

ENOBUFS
The number of source addresses exceeds the allowed limit.

EPROTOTYPE
The socket protocol type is not correct.

ENOMEM
Insufficient storage is available to supply the array.

ENXIO
The specified interface index provided in the interface parameter does not
exist.

shutdown() call

The shutdown() call shuts down all or part of a duplex connection.

shutdown() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int shutdown(int s, int how)

238

shutdown() call parameters
s The socket descriptor.

how The how parameter can have a value of 0, 1, or 2, where:
* 0 ends communication from socket s.
* 1 ends communication to socket s.

* 2 ends communication both to and from socket s.

shutdown() call return values

The value 0 indicates success; the value -1 indicates an error. To determine which
error occurred, check the errno global variable, which is set to a return code.
Possible codes include:

EBADF
s is not a valid socket descriptor.

EINVAL
The how parameter was not set to one of the valid values. Valid values are
0,1, and 2.

socket() call

The socket() call creates an endpoint for communication and returns a socket
descriptor representing the endpoint. Different types of sockets provide different
communication services.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,
flow-controlled connections between peer applications. Stream sockets are either
active or passive. Active sockets are used by clients that initiate connection
requests with connect(). By default, socket() creates active sockets. Passive sockets

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

are used by servers to accept connection requests with the connect() call. An active
socket is transformed into a passive socket by binding a name to the socket with
the bind() call and by indicating a willingness to accept connections with the
listen() call. After a socket is passive, it cannot be used to initiate connection
requests.

SOCK_DGRAM supports datagrams (connectionless messages) of a fixed
maximum length. Transmission reliability is not guaranteed. Datagrams can be
corrupted, received out of order, lost, or delivered multiple times.

Sockets are deallocated with the close() call.

socket() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>
#include <socket.h>

int socket(int domain,

int type, int protocol)

socket() call parameters

domain The domain parameter specifies a communication domain within which
communication is to take place. This parameter selects the address family
(format of addresses within a domain) that is used. The only families
supported by CICS TCP/IP are AF_INET and AF_INET6, which are both
the Internet domain. The AF_INET and AF_INET6 constant is defined in
the socket.h header file.

type The type parameter specifies the type of socket created. These socket type
constants are defined in the socket.h header file.

This must be set to either SOCK_STREAM or SOCK_DGRAM.

protocol
The protocol parameter specifies a particular protocol to be used with the
socket. In most cases, a single protocol exists to support a particular type
of socket in a particular addressing family. If the protocol parameter is set to
0, the system selects the default protocol number for the domain and
socket type requested. Protocol numbers are found in the hlq. ETC.PROTO
data set. The default protocol for stream sockets is TCP. The default protocol
for datagram sockets is UDP.

socket() call return values

A nonnegative socket descriptor indicates success. The value -1 indicates an error.
To determine which error occurred, check the errno global variable, which is set to
a return code. Possible codes include:

EPROTONOSUPPORT
The protocol is not supported in this domain, or this protocol is not
supported for this socket type.

takesocket() call

The takesocket() call acquires a socket from another program. The CICS listener
passes the client ID and socket descriptor in the COMMAREA.

Chapter 7. C language application programming 239

#include <manifest.h>
#include <cmanifes.h>
#include <bsdtypes.h>
#include <socket.h>

int takesocket(struct
int hisdesc)

takesocket() call format
This call has the following format:

(non-reentrant programs only)
(reentrant programs only)

clientid *client_id,

takesocket() call parameters

clientid A pointer to the clientid of the application from which you are taking a
socket.

domain
Sets the domain of the program giving the socket. Set as either
AF_INET (a decimal 2) or AF_INET6 (a decimal 19).

Rule: An AF_INET socket can be taken only from an AF_INET
givesocket(). An AF_INET6 socket can be taken only from an
AF_INET6 givesocket(). EBADF is set if the domain does not
match.

name Set to the address space identifier of the program that gave the
socket.

subtaskname
Set to the task identifier of the task that gave the socket.

reserved
Binary zeros.

hisdesc The descriptor of the socket to be taken.

takesocket() call return values

A nonnegative socket descriptor is the descriptor of the socket to be used by this
process. The value -1 indicates an error. To determine which error occurred, check
the errno global variable, which is set to a return code. Possible codes include:

EACCES
The other application did not give the socket to your application.

EBADF
The hisdesc parameter does not specify a valid socket descriptor owned by
the other application. The socket has already been taken.

EFAULT
Using the clientid parameter as specified results in an attempt to access
storage outside the caller’s address space.

EINVAL
The clientid parameter does not specify a valid client identifier.

EMFILE
The socket descriptor table is already full.

ENOBUFS
The operation cannot be performed because of the shortage of SCB or
SKCB control blocks in the TCP/IP address space.

240 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

EPFNOSUPPORT
The domain field of the clientid parameter is not AF_INET or AF_INETS6.

write() call

This call writes data on a connected socket.

Stream sockets act like streams of information with no boundaries separating data.
For example, if an application wishes to send 1000 bytes, each call to this function
can send 1 byte or 10 bytes or the entire 1 000 bytes. Therefore, applications using
stream sockets should place this call in a loop, calling this function until all data
has been sent.

write() call format
This call has the following format:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int write(int s, char *buf, int len)

write() call parameters

s The socket descriptor.

buf The pointer to the buffer holding the data to be written.

len The length in bytes of the buffer pointed to by the buf parameter.

write() call return values

If successful, the number of bytes written is returned. The value -1 indicates an
error. To determine which error occurred, check the errno global variable, which is
set to a return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters results in an attempt to access storage
outside the caller’s address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
s is in nonblocking mode and data is not available to write.

Address Testing Macros

This topic describes the macros that can be used to test for special IPv6 addresses.

Chapter 7. C language application programming 241

#include <netinet/in.h>

int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *)
int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *)
int IN6_IS_ADDR_MULTICAST (const struct in6_addr *)
int IN6_IS ADDR_LINKLOCAL (const struct in6_addr *)
int IN6_IS ADDR_SITELOCAL (const struct in6_addr *)
int IN6_IS_ADDR_VAMAPPED (const struct in6_addr *)
int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *)
int IN6_IS_ADDR_MC_NODELOCAL (const struct in6_addr *)
int IN6_IS_ADDR_MC_LINKLOCAL (const struct in6_addr =)
int IN6_IS_ADDR_MC_SITELOCAL (const struct in6_addr)
int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr #)

int IN6_IS ADDR_MC_GLOBAL (const struct in6_addr *)

IN6_IS_ADDR_UNSPECIFIED
Returns true if the address is the unspecified IPv6 address (in6addr_any).
Otherwise, the macro returns false.

IN6_IS ADDR_LOOPBACK
Returns true if the address is an IPv6 loopback address. Otherwise, the
macro returns false.

IN6_IS_ADDR_MULTICAST
Returns true if the address is an IPv6 multicast address. Otherwise, the
macro returns false.

IN6_IS_ADDR_LINKLOCAL
Returns true if the address is an IPv6 link local address. Otherwise, the
macro returns false.

Returns true for local-use IPv6 unicast addresses.
Returns false for the IPv6 loopback address.
Does not return true for IPv6 multicast addresses of link-local scope.

IN6_IS_ADDR_SITELOCAL
Returns true if the address is an IPvé6 site local address. Otherwise, the
macro returns false.

Returns true for local-use IPv6 unicast addresses.
Does not return true for IPv6 multicast addresses of site-local scope.

IN6_IS_ADDR_V4MAPPED
Returns true if the address is an IPv4 mapped IPv6 address. Otherwise, the
macro returns false.

IN6_IS_ ADDR_V4COMPAT
Returns true if the address is an IPv4 compatible IPv6 address. Otherwise,
the macro returns false.

242 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

IN6_IS_ADDR_MC_NODELOCAL
Used to test the scope of a multicast address and returns true if the
address is a multicast address of the specified scope or false if the address
is not a multicast address or not of the specified scope.

IN6_IS_ADDR_MC_LINKLOCAL
Used to test the scope of a multicast address and returns true if the
address is a multicast address of the specified scope or false if the address
is either not a multicast address or not of the specified scope.

IN6_IS_ADDR_MC_SITELOCAL
Used to test the scope of a multicast address and returns true if the
address is a multicast address of the specified scope or false if the address
is either not a multicast address or not of the specified scope.

IN6_IS_ADDR_MC_ORGLOCAL
Used to test the scope of a multicast address and returns true if the
address is a multicast address of the specified scope or false if the address
is either not a multicast address or not of the specified scope.

IN6_IS_ADDR_MC_GLOBAL
Used to test the scope of a multicast address and returns true if the
address is a multicast address of the specified scope or false if the address
is either not a multicast address or not of the specified scope.

Chapter 7. C language application programming 243

244 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Chapter 8. Sockets extended API

This topic contains information about the sockets extended application
programming interface (API).

Environmental restrictions and programming requirements for the
Callable Socket API

The following environmental restrictions and programming requirements apply to
the Callable Socket API:

SRB mode

This API can be invoked only in TCB mode (task mode).

Cross-memory mode

This API can be invoked only in a non-cross-memory environment
(PASN=SASN=HASN).

Functional Recovery Routine (FRR)

Do not invoke this API with an FRR set. This causes system recovery routines to
be bypassed and severely damage the system.

Locks

No locks should be held when issuing this call.

INITAPI, INITAPIX, and TERMAPI calls

The INITAPI, INITAPIX, and TERMAPI calls must be issued under the same
task.

Storage

Storage acquired for the purpose of containing data returned from a socket call
must be obtained in the same key as the application program status word (PSW)
at the time of the socket call.

Nested socket API calls
You cannot issue "nested" API calls within the same task. That is, if a request
block (RB) issues a socket API call and is interrupted by an interrupt request

block (IRB) in an STIMER exit, any additional socket API calls that the IRB
attempts to issue are detected and flagged as an error.

CALL instruction API

This topic describes the CALL instruction API for TCP/IP application programs
written in the COBOL, PL/I, or System/370 Assembler language. The format and
parameters are described for each socket call.

Note:

Unless your program is running in a CICS environment, reentrant code and
multithread applications are not supported by this interface.
Only one copy of an interface can exist in a single address space.
For a PL/I program, include the following statement before your first call
instruction.

DCL EZASOKET ENTRY OPTIONS(ASM,INTER) EXT;

The entry point for the CICS Sockets Extended module (EZASOKET) is within
the hlg.SEZATCP(EZACICAL) load module and should be resolved from there

© Copyright IBM Corp. 2000, 2015 245

when processed by the binder. Therefore, EZACICAL should be included
explicitly in your link-editing JCL. If not included, you could experience
problems, such as the CICS region waiting for the socket calls to complete. You

can use the linkage editor MAP parameter to produce the module map report to
verify where EZASOKET is resolved.

See [Figure 177 on page 416]

If you do not want to explicitly include EZACICAL in your link-edit JCL then
you can use the EZACICSO CICS Sockets Extended module. The EZACICSO
CICS Sockets Extended module is an ALIAS for EZASOKET that resides in the
same entry point in EZACICAL as EZASOKET. You must also substitute any
"CALL EZASOKET" invocations in your program with "CALL EZACICSQO". This
allows you to use the Binder's Automatic Library Call option (AUTOCALL) to
build your load modules.

SEZATCP load library data set needs to be included in the SYSLIB DD
concatenation.

Understanding COBOL, assembler, and PL/I call formats

246

This API is invoked by calling the EZASOKET or EZACICSO program and
performs the same functions as the C language calls. The parameters look different
because of the differences in the programming languages.

COBOL language call format
The following is the 'EZASOKET' call format for COBOL language programs.

»>—CALL 'EZASOKET' USING SOC-FUNCTION—parml, parm2, ...—ERRNO RETCODE.—— >«

The following is the 'EZACICSO' call format for the COBOL language programs.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

»—CALL '"EZACICSO' USING SOC-FUNCTION—parml, parm2, ...—ERRNO RETCODE.—— >«

SOC-FUNCTION
A 16-byte character field, left-aligned and padded on the right with blanks.
Set to the name of the call. SOC-FUNCTION is case-specific. It must be in
uppercase.

parmn A variable number of parameters depending on the type of call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Assembler language call format

The following is the ‘/EZASOKET’ call format for assembler language programs.
Because DATAREG is used to access the application's working storage, applications
using the assembler language format should not code DATAREG but should let it
default to the CICS data register.

»»—CALL EZASOKET, (SOC-FUNCTION,—parml, parmZ, ...—ERRNO RETCODE),VL,MF=(E, PARMLIST)——— >«

The following is the 'EZACICSO' call format for assembler language programs.

Chapter 8. Sockets extended API 247

248

»»—CALL EZACICSO, (SOC-FUNCTION,—parml, parmZ, ...—ERRNO RETCODE),VL,MF=(E, PARMLIST)——— >«

PARMLIST
A remote parameter list defined in dynamic storage DFHEISTG. This list
contains addresses of 30 parameters that can be referenced by all execute
forms of the CALL.

Note: This form of CALL is necessary to meet the CICS requirement for
quasi-reentrant programming.

SOC-FUNCTION
A 16-byte character field, left-alighed and padded on the right with blanks.
Set to the name of the call. SOC-FUNCTION is case-specific. It must be in
uppercase.

parm n
A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

PL/I language call format

The following is the 'EZASOKET' call format for PL/I language programs.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

A\
A

»>—CALL EZASOKET (SOC-FUNCTION—parml, parmZ?, ...—ERRNO RETCODE);

The following is the 'EZACICSO' call format for the PL/I language programs.

»»—CALL EZACICSO (SOC-FUNCTION—parml, parm2, ...—ERRNO RETCODE); >

SOC-FUNCTION
A 16-byte character field, left-aligned and padded on the right with blanks.

Set to the name of the call.
parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned

by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET

call. This value corresponds to the normal return value of a C function.

Converting parameter descriptions

The parameter descriptions in this topic are written using the VS COBOL II PIC
language syntax and conventions, but you should use the syntax and conventions
that are appropriate for the language you want to use.

[Figure 117 on page 250 shows examples of storage definition statements for
COBOL, PL/I, and assembler language programs.

Chapter 8. Sockets extended API 249

VS COBOL II PIC

PIC S9(4) BINARY HALFWORD BINARY VALUE

PIC S9(8) BINARY FULLWORD BINARY VALUE

PIC X(n) CHARACTER FIELD OF N BYTES
COBOL PIC

PIC S9(4) COMP HALFWORD BINARY VALUE

PIC S9(8) COMP FULLWORD BINARY VALUE

PIC X(n) CHARACTER FIELD OF N BYTES

PL/1 DECLARE STATEMENT

DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

Figure 117. Storage definition statement examples

Error messages and return codes

For information about error messages, see [z/OS Communications Server: IP|
[Messages Volume 1 (EZA)|

For information about error codes that are returned by TCP/IP, see
[‘Return codes,” on page 449

Code CALL instructions

This topic contains the description, syntax, parameters, and other related
information for each call instruction included in this APL

ACCEPT call

A server issues the ACCEPT call to accept a connection request from a client. The
call points to a socket that was previously created with a SOCKET call and marked
by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:
1. Accepts the first connection on a queue of pending connections.

2. Creates a new socket with the same properties as s, and returns its descriptor
in RETCODE. The original sockets remain available to the calling program to
accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Note:

* The blocking or nonblocking mode of a socket affects the operation of certain
commands. The default is blocking; nonblocking mode can be established by use
of the FCNTL and IOCTL calls. When a socket is in blocking mode, an 1/O call
waits for the completion of certain events. For example, a READ call blocks until
the buffer contains input data. When an I/0 call is issued: if the socket is

250 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

blocking, program processing is suspended until the event completes; if the
socket is nonblocking, program processing continues.

* If the queue has no pending connection requests, ACCEPT blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling FCNTL or IOCTL.

* When multiple socket calls are issued, a SELECT call can be issued prior to the
ACCEPT to ensure that a connection request is pending. Using this technique
ensures that subsequent ACCEPT calls do not block.

* TCP/IP does not provide a function for screening clients. As a result, it is up to
the application program to control which connection requests it accepts, but it
can close a connection immediately after discovering the identity of the client.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 118 on page 252 shows an example of ACCEPT call instructions.

Chapter 8. Sockets extended API 251

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC

X(16) VALUE IS 'ACCEPT'.
9(4) BINARY.

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.

01 S PIC
*
* IPv4 Socket Address Structure.
*
01 NAME.
03 FAMILY PIC
03 PORT PIC
03 IP-ADDRESS PIC
03 RESERVED PIC X(8).
*
* [Pv6 Socket Address Structure.

01 NAME.
03 FAMILY PIC
03 PORT PIC

03 FLOW-INFO PIC
03 IP-ADDRESS.
05 FILLER PIC
05 FILLER PIC
03 SCOPE-ID PIC
01 ERRNO PIC
01 RETCODE PIC

PROCEDURE DIVISION.

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.

9(16) BINARY.
9(16) BINARY.
9(8) BINARY.
9(8) BINARY.
S9(8) BINARY.

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 118. ACCEPT call instructions example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249 |

252

Parameter values set by the application for the ACCEPT call

SOC-FUNCTION
A 16-byte character field containing 'ACCEPT'". Left-justify the field and
pad it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was
previously created with a SOCKET call. In a concurrent server, this is the
socket upon which the server listens.

Parameter values returned to the application for the ACCEPT call

NAME

* An IPv4 socket address structure that contains the client’s IPv4 socket

address.

FAMILY
A halfword binary field specifying the addressing family. The
call returns the decimal value of 2 for AF_INET.

PORT A halfword binary field that is set to the client’s port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet
address, in network byte order, of the client’s host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not
used.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* An IPv6 socket address structure that contains the client's IPv6 socket
address.

FAMILY
A halfword binary field specifying the addressing family. The
call returns the decimal value of 19 for AF_INETS6.

PORT A halfword binary field that is set to the client's port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
The value of this field is undefined.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client's host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID
contains the link index for the IP~-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket
number.
If the RETCODE value is negative, check the ERRNO field for an error
number.
BIND call

In a typical server program, the BIND call follows a SOCKET call and completes
the process of creating a new socket.

The BIND call can either specify the required port or let the system choose the
port. A listener program should always bind to the same well-known port, so that
clients know what socket address to use when attempting to connect.

Even if an application specifies a value of 0 for the IP address on the BIND, the
system administrator can override that value by specifying the BIND parameter on
the PORT reservation statement in the TCP/IP profile. This has a similar effect to
the application specifying an explicit IP address on the BIND macro. For more
information, see [z/OS Communications Server: IP Configuration Reference]

In the AF_INET or AF_INET6 domain, the BIND call for a stream socket can
specify the networks from which it is willing to accept connection requests. The
application can fully specify the network interface by setting the IP-ADDRESS field
to the Internet address of a network interface. Alternatively, the application can use
a wildcard to specify that it wants to receive connection requests from any network
interface. This is done by setting the I>~ADDRESS field to the value of
INADDR-ANY or INGADDR-ANY.

The following requirements apply to this call:

Chapter 8. Sockets extended API 253

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of BIND call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND'.
01 S PIC 9(4) BINARY.

*

IPv4 Socket Address Structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

*

IPv6 Socket Address Structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOW-INFO PIC 9(8) BINARY.
03 IP-ADDRESS.
05 FILLER PIC 9(16) BINARY.
05 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 119. BIND call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the BIND call

SOC-FUNCTION
A 16-byte character field containing BIND. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
to be bound.

NAME

254 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* Specifies the IPv4 socket address structure for the socket that is to be
bound.

FAMILY
A halfword binary field specifying the addressing family. The
value is set to a decimal 2, indicating AF_INET.

PORT A halfword binary field that is set to the port number to which
you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system
assigns the port number for the socket. The application can call
the GETSOCKNAME call after the BIND call to discover the
assigned port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit Internet address
(network byte order) of the socket to be bound.

RESERVED
Specifies an eight-byte character field that is required but not
used.

* Specifies the IPv6 socket address structure for the socket that is to be
bound.

FAMILY
A halfword binary field specifying the addressing family. The
value is set to a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the port number to which
you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system
assigns the port number for the socket. The application can call
the GETSOCKNAME call after the BIND call to discover the
assigned port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This field must be set to zero.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address (network byte order) of the socket to be bound.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. A value of zero indicates the SCOPE-ID field
does not identify the set of interfaces to be used, and can be
specified for any address types and scopes. For a link scope
IP-ADDRESS, SCOPE-ID can specify a link index which
identifies a set of interfaces. For all other address scopes,
SCOPE-ID must be set to zero.

Parameter values returned to the application for the BIND call

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See |[Appendix B, “Return codes,” on page 449 | for
information about ERRNO return codes.

Chapter 8. Sockets extended API 255

256

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

BIND2ADDRSEL call

The BIND2ADDRSEL call binds a socket to the local IP address that would be
selected by the stack to communicate with the input destination IP address.

Use the BIND2ADDRSEL call when the application must verify that the local IP
address assigned by the stack meets its address selection criteria as specified by the
IPV6_ADDR_PREFERENCES socket option before the stack sends any packets to
the remote host. In a TCP or UDP application, the BIND2ADDRSEL call usually
follows the SETSOCKOPT call with option IPV6_ADDR_PREFERENCES and
precedes any communication with a remote host.

Result: The stack attempts to select a local IP address according to your
application preferences. However, a successful BIND2ADDRSEL call does not
guarantee that all of your source IP address selection preferences were met.

Guidelines:

* Use the SETSOCKOPT call to set the IPV6_ADDR_PREFERENCES option to
indicate your selection preferences of source IP address before binding the socket
and before allowing an implicit bind of the socket to occur.

Result: If a socket has not been explicitly bound to a local IP address with a
BIND or BIND2ADDRSEL call when a CONNECT, SENDTO, or SENDMSG call
is issued, an implicit bind occurs. The stack chooses the local IP address used for
outbound packets.

Requirement: When your application is using stream sockets, and must prevent
the stack from sending any packets whatsoever (such as SYN) to the remote host
before it can verify that the local IP address meets the values specified for the
IPV6_ADDR_PREFERENCES option, do not allow the CONNECT call to
implicitly bind the socket to a local IP address. Instead, bind the socket with the
BIND2ADDRSEL call and test the local IP address assigned with the
INET6_IS_SRCADDR call. If the assigned local IP address is satisfactory, you can
then use the CONNECT call to establish communication with the remote host.

* After you successfully issue the BIND2ADDRSEL call, use the GETSOCKNAME
call to obtain the local IP address that is bound to the socket. When the local IP
address is obtained, use the INET6_IS_SRCADDR call to verify that the local IP
address meets your address selection criteria.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Requirement Description
Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

shows an example of BIND2ADDRSEL call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND2ADDRSEL'.

01 S PIC 9(4) BINARY.
*IPv6 socket address structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 120. BIND2ADDRSEL call instructions example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing BIND2ADDRSEL. The field is
left-justified and padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
to be bound.

Requirement: The socket must be an AF_INET6 socket. The type can be
SOCK_STREAM or SOCK_DGRAM.

NAME
Specifies the IPv6 socket address structure of the remote host that the
socket will communicate with.

The IPv6 socket structure must specify the following fields:
Field Description

FAMILY
A halfword binary field specifying the IPv6 addressing family. This
must be set to decimal 19, indicating AF_INET®6.

PORT A halfword binary field. This field is ignored by BIND2ADDRSEL
processing.

Guideline: To determine the assigned port number, issue the
GETSOCKNAME call after the BIND2ADDRSEL call completes.

Chapter 8. Sockets extended API 257

258

FLOWINFO
A fullword binary field. This field is ignored by BIND2ADDRSEL
processing.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address (network byte order) of the remote host that the socket
will communicate with.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6
format.

SCOPE-ID
A fullword binary field that identifies a set of interfaces as being
appropriate for the scope of the address specified in the
IPv6-ADDRESS field. The value 0 indicates that the SCOPE-ID
tield does not identify the set of interfaces to be used.

Requirements: The SCOPE-ID value must be nonzero if the
address is a link-local address. For all other address scopes, the
SCOPE-ID value must be set to 0.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:

Value Description
0 Successful call.

-1 Check ERRNO for an error code.

CLOSE call

The CLOSE call performs the following functions:

e The CLOSE call shuts down a socket and frees all resources allocated to it. If the
socket refers to an open TCP connection, the connection is closed.

* The CLOSE call is also issued by a concurrent server after it gives a socket to a
child server program. After issuing the GIVESOCKET and receiving notification
that the client child has successfully issued a TAKESOCKET, the concurrent
server issues the close command to complete the passing of ownership. In
high-performance, transaction-based systems the timeout associated with the
CLOSE call can cause performance problems. In such systems you should
consider the use of a SHUTDOWN call before you issue the CLOSE call. See
['SHUTDOWN call” on page 384 for more information.

Note:

1. If a stream socket is closed while input or output data is queued, the TCP
connection is reset and data transmission might be incomplete. The
SETSOCKET call can be used to set a linger condition, in which TCP/IP
continues to attempt to complete data transmission for a specified period of
time after the CLOSE call is issued. See SO-LINGER in the description of
['SETSOCKOPT call” on page 368 .|

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

2. A concurrent server differs from an iterative server. An iterative server
provides services for one client at a time; a concurrent server receives
connection requests from multiple clients and creates child servers that
actually serve the clients. When a child server is created, the concurrent
server obtains a new socket, passes the new socket to the child server, and
then dissociates itself from the connection. The CICS listener is an example of
a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket
should be opened. An attempt to use the same socket with another call
results in a nonzero return code.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 121 on page 260|shows an example of CLOSE call instructions.

Chapter 8. Sockets extended API 259

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'CLOSE'.

01
01
01
01

S
ERRNO
RETCODE

PIC 9(4) BINARY.
PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION S ERRNO RETCODE.

Figure 121. CLOSE call instruction example

260

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values returned to the application for the CLOSE call

SOC-FUNCTION
A 16-byte field containing CLOSE. Left-justify the field and pad it on the
right with blanks.

S A halfword binary field containing the descriptor of the socket to be
closed.

Parameter values set by the application for the CLOSE call

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

CONNECT call

The CONNECT call is issued by a client to establish a connection between a local
socket and a remote socket.

The call sequence issued by the client and server for stream sockets is:
1. The server issues BIND and LISTEN to create a passive open socket.
2. The client issues CONNECT to request the connection.

3. The server accepts the connection on the passive open socket, creating a new
connected socket.

The blocking mode of the CONNECT call conditions its operation.
e If the socket is in blocking mode, the CONNECT call blocks the calling program
until the connection is established, or until an error is received.

¢ If the socket is in nonblocking mode, the return code indicates whether the
connection request was successful.

— A RETCODE of 0 indicates that the connection was completed.
— A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that

the connection is not completed but because the socket is nonblocking, the
CONNECT call returns normally.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

The caller must test the completion of the connection setup by calling SELECT
and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more
information, see [‘SELECT call” on page 348

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of CONNECT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'CONNECT'.
01 S PIC 9(4) BINARY.

*

IPv4 Socket Address Structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 Socket Address Structure.
*
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOW-INFO PIC 9(8) BINARY.
03 IP-ADDRESS.
05 FILLER PIC 9(16) BINARY.
05 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 122. CONNECT call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Chapter 8. Sockets extended API 261

Stream sockets and the CONNECT call

For stream sockets, the CONNECT call is issued by a client to establish connection

with a server. The call performs two tasks:

1. It completes the binding process for a stream socket if a BIND call has not been
previously issued.

2. It attempts to make a connection to a remote socket. This connection is
necessary before data can be transferred.

UDP sockets and the CONNECT call
For UDP sockets, a CONNECT call does not need to precede an I/O call, but if
issued, it allows you to send messages without specifying the destination.

Parameter values set by the application for the CONNECT call

SOC-FUNCTION
A 16-byte field containing CONNECT. Left-justify the field and pad it on
the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket
that is to be used to establish a connection.

NAME

* A structure that contains the IPv4 socket address of the target to which
the local client socket is to be connected.

FAMILY
A halfword binary field specifying the addressing family. The
value must be a decimal 2 for AF_INET.

PORT A halfword binary field that is set to the server’s port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hexadecimal.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet
address of the server’s host machine in network byte order. For
example, if the Internet address is 129.4.5.12 in dotted decimal
notation, it would be represented as '8104050C" in hexadecimal.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is
not used.

* A structure that contains the IPv6 socket address of the target to which
the local client socket is to be connected.

FAMILY
A halfword binary field specifying the addressing family. The
value must be a decimal 19 for AF_INETS6.

PORT A halfword binary field that is set to the server's port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hexadecimal.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This field must be set to zero.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address of the server's host machine in network byte order. For
example, if the IPv6 Internet address is

262 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

12ab:0:0:cd30:123:4567:89ab:cedf in colon-hexadecimal notation, it
is set to X'12AB00000000CD300123456789ABCDEF'.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. A value of zero indicates the SCOPE-ID field
does not identify the set of interfaces to be used, and can be
specified for any address types and scopes. For a link scope
IP-ADDRESS, SCOPE-ID can specify a link index which
identifies a set of interfaces. For all other address scopes,
SCOPE-ID must be set to zero.

Parameter values returned to the application for the CONNECT
call

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See |[Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call

-1 Check ERRNO for an error code

FCNTL call

The blocking mode of a socket can either be queried or set to nonblocking using
the FNDELAY flag described in the FCNTL call. You can query or set the
FNDELAY flag even though it is not defined in your program.

See|["IOCTL call” on page 317|for another way to control a socket’s blocking mode.

Values for Command which are supported by the z/OS UNIX System Services
fentl callable service is also be accepted. See the [z/OS UNIX System Services|
[Programming: Assembler Callable Services Reference| for more information.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 123 on page 264] shows an example of FCNTL call instructions.

Chapter 8. Sockets extended API 263

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'FCNTL'.

01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(8) BINARY.
01 REQARG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
ERRNO RETCODE.

Figure 123. FCNTL call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

Parameter values set by the application for the FCNTL call

SOC-FUNCTION
A 16-byte character field containing FCNTL. The field is left-aligned and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
that you want to unblock or query.
COMMAND

A fullword binary number with the following values.

Value Description

3 Query the blocking mode of the socket

4 Set the mode to blocking or nonblocking for the socket

REQARG
A fullword binary field containing a mask that TCP/IP uses to set the
FNDELAY flag.

* If COMMAND is set to 3 ('query’) the REQARG field should be set to 0.
* If COMMAND is set to 4 ('set')

- Set REQARG to 4 to turn the FNDELAY flag on. This places the
socket in nonblocking mode.

- Set REQARG to 0 to turn the FNDELAY flag off. This places the
socket in blocking mode.

Parameter values returned to the application for the FCNTL call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
+ If COMMAND was set to 3 (query), a bit string is returned.

— If RETCODE contains X'00000004', the socket is nonblocking. (The
FNDELAY flag is on.)

— If RETCODE contains X'00000000', the socket is blocking. (The
FNDELAY flag is off.)

264 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

¢ If COMMAND was set to 4 (set), a successful call is indicated by 0 in
this field. In both cases, a RETCODE of -1 indicates an error (Check the
ERRNO field for the error number.)

FREEADDRINFO call

FREEADDRINFO frees all the address information structures returned by
GETADDRINFO in the RES parameter. [Figure 124 on page 266/ shows an example
of FREEADDRINFO call instructions.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 124 on page 266 shows an example of FREEADDRINFO call instructions.

Chapter 8. Sockets extended API 265

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'FREEADDRINFO'.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION ADDRINFO ERRNO RETCODE.

Figure 124. FREEADDRINFO call instruction example

266

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application for the FREEADDRINFO
call

SOC-FUNCTION
A 16-byte character field containing 'FREEADDRINFO'. The field is
left-justified and padded on the right with blanks.

ADDRINFO
The address of a set of address information structures returned by the
GETADDRINFO RES argument.

Parameter values returned to the application for the
FREEADDRINFO call

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains an error
number. See |[Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

GETADDRINFO call

GETADDRINFO translates the name of a service location (for example, a host
name), service name, or both and returns a set of socket addresses and associated
information to be used in creating a socket with which to address the specified
service or sending a datagram to the specified service. [Figure 125 on page 268§
shows an example of GETADDRINFO call instructions.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Requirement Description

Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 125 on page 268 shows an example of GETADDRINFO call instructions.

Chapter 8. Sockets extended API 267

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETADDRINFO'.

01 NODE PIC X(255).

01 NODELEN PIC 9(8) BINARY.

01 SERVICE PIC X(32).

01 SERVLEN PIC 9(8) BINARY.

01 AI-PASSIVE PIC 9(8) BINARY VALUE 1.

01 AI-CANONNAMEOK PIC 9(8) BINARY VALUE 2.
01 AI-NUMERICHOST PIC 9(8) BINARY VALUE 4.
01 AI-NUMERICSERV PIC 9(8) BINARY VALUE 8.
01 AI-VAMAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ALL PIC 9(8) BINARY VALUE 32.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.
01 AI-EXTFLAGS PIC 9(8) BINARY VALUE 128.

01 HINTS USAGE IS POINTER.
01 RES USAGE IS POINTER.
01 CANNLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

LINKAGE SECTION.
01 HINTS-ADDRINFO.

03 FLAGS PIC 9(8) BINARY.
03 AF PIC 9(8) BINARY.
03 SOCTYPE PIC 9(8) BINARY.
03 PROTO PIC 9(8) BINARY.
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC X(4).
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC 9(8) BINARY.
03 EFLAGS PIC 9(8) BINARY.
01 RES-ADDRINFO.
03 FLAGS PIC 9(8) BINARY.
03 AF PIC 9(8) BINARY.
03 SOCTYPE PIC 9(8) BINARY.
03 PROTO PIC 9(8) BINARY.
03 NAMELEN PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC X(4).
03 CANONNAME USAGE IS POINTER.
03 FILLER PIC X(4).
03 NAME USAGE IS POINTER.
03 FILLER PIC X(4).
03 NEXT USAGE IS POINTER.
03 FILLER PIC 9(8) BINARY.

PROCEDURE DIVISION.

MOVE 'www.hostname.com' TO NODE.

MOVE 16 TO HOSTLEN.

MOVE 'TELNET' TO SERVICE.

MOVE 6 TO SERVLEN.

SET HINTS TO ADDRESS OF HINTS-ADDRINFO.

CALL 'EZASOKET' USING SOC-FUNCTION
NODE NODELEN SERVICE SERVLEN HINTS
RES CANNLEN ERRNO RETCODE.

Figure 125. GETADDRINFO call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

268 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Parameter values set by the application for the GETADDRINFO
call

SOC-FUNCTION
A 16-byte character field containing 'GETADDRINFQO'. The field is
left-justified and padded on the right with blanks.

NODE
Storage maximum of 255 bytes that contains the host name being queried.
If the AI-NUMERICHOST flag is specified in the storage pointed to by the
HINTS operand, then NODE should contain the queried hosts IP address
in presentation form. This is an optional field but if specified you must
also code NODELEN.

Scope information can be appended to the host name, using the format
node%scope information. The combined length of the value specified must
still fit within 255 bytes. For information about using scope information on
GETADDRINFO processing, see [z/OS Communications Server: IPvé|
[Network and Application Design Guide.

NODELEN
A fullword binary field set to the length of the host name specified in the
NODE field. This field should not include extraneous blanks. This is an
optional field but if specified you must also code NODE.

SERVICE
Storage maximum of 32 bytes that contains the service name being
queried. If the AI-NUMERICSERYV flag is specified in the storage pointed
to by the HINTS operand, then SERVICE should contain the queried port
number in presentation form. This is an optional field but if specified you
must also code SERVLEN.

SERVLEN
A fullword binary field set to the length of the service name specified in
the SERVICE field. This field should not include extraneous blanks. This is
an optional field but if specified you must also code SERVICE.

HINTS
If the HINTS argument is specified, it contains the address of an addrinfo
structure containing input values that can direct the operation by
providing options and by limiting the returned information to a specific
socket type, address family, and protocol. If the HINTS argument is not
specified, the information returned is as if it referred to a structure
containing the value 0 for the FLAGS, SOCTYPE and PROTO fields, and
AF_UNSPEC for the AF field. Include the EZBREHST resolver macro to
enable your assembler program to contain the assembler mappings for the
ADDR_INFO structure.

The EZBREHST macro is stored in SYS1.MACLIB, r hostent, addrinfo
mappings, and services return codes. Copy definitions from EZACOBOL
sample module to your COBOL program for mapping the ADDRINFO
structure. The EZACOBOL sample module is stored in hlq.SEZAINST
library. Copy definitions from CBLOCK sample module to your PL/I
program for mapping the ADDRINFO structure. The CBLOCK sample
module is stored in hlq.SEZAINST library.

This is an optional field. The address information structure has the
following fields:

Field Description

Chapter 8. Sockets extended API 269

FLAGS
A fullword binary field. The value of this field must be 0 or the
bitwise OR of one or more of the following flags:

AI-PASSIVE (X'00000001') or a decimal value of 1
Specifies how to fill in the name pointed to by the returned
RES parameter.

If this flag is specified, the returned address information
can be used to bind a socket for accepting incoming
connections for the specified service (for example, using
the BIND call). If you use the BIND call and if the NODE
argument is not specified, the IP address portion of the
socket address structure pointed to by the returned RES
parameter is set to INADDR_ANY for an IPv4 address or
to the IPv6 unspecified address (in6addr_any).

If this flag is not set, the returned address information can
be used for the CONNECT call (for a connection-mode
protocol) or on a CONNECT, SENDTO, or SENDMSG call
(for a connectionless protocol). If you use a CONNECT call
and if the NODE argument is not specified, the NAME
pointed to by the returned RES is set to the loopback
address.

This flag is ignored if the NODE argument is specified.

AI-CANONNAMEOK (X'00000002") or a decimal value of 2
If this flag is specified and the NODE argument is
specified, the GETADDRINFO call attempts to determine
the canonical name corresponding to the NODE argument.

AI-NUMERICHOST (X'00000004') or a decimal value of 4
If this flag is specified, the NODE argument must be a
numeric host address in presentation form. Otherwise, an
error of host not found [EAI_NONAME] is returned.

AI-NUMERICSERYV (X'00000008'") or a decimal value of 8
If this flag is specified, the SERVICE argument must be a
numeric port in presentation form. Otherwise, an error
[EAI_NONAME] is returned.

AI-VAMAPPED (X'00000010") or a decimal value of 16
If this flag is specified along with the AF field with the
value of AF_INETS6, or a value of AF_UNSPEC when IPvé6
is supported on the system, the caller accepts IPv4-mapped
IPv6 addresses. When the AI-ALL flag is not also specified,
if no IPv6 addresses are found, a query is made for IPv4
addresses. If IPv4 addresses are found, they are returned as
IPv4-mapped IPv6 addresses. If the AF field does not have
the value of AF_INETS6, or the AF field contains
AF_UNSPEC but IPv6 is not supported on the system, then
this flag is ignored.

AI-ALL (X'00000020") or a decimal value of 32
When the AF field has a value of AF_INET6 and AI-ALL is
set, the AI-VAMAPPED flag must also be set to indicate
that the caller accepts all addresses (IPv6 and IPv4-mapped
IPv6 addresses). When the AF field has a value of
AF_UNSPEC, and when the system supports IPv6 and

270 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

AI-ALL is set, the caller accepts both IPv6 and IPv4
addresses. A query is first made for IPv6 addresses and if
successful, the IPv6 addresses are returned. Another query
is then made for IPv4 addresses, and any IPv4 addresses
found are returned as either IPv4-mapped IPv6 addresses
(if AI-VAMAPPED is also specified) or as IPv4 addresses (if
AI-VAMAPPED is not specified). If the AF field does not
have the value of AF_INET6, or does not have the value of
AF_UNSPEC when the system supports IPv6, then this flag
is ignored.

AI-ADDRCONFIG (X'00000040') or a decimal value of 64
If this flag is specified, a query on the name in nodename
occurs if the resolver determines that one of the following
is true:

e If the system is IPv6 enabled and has at least one IPv6
interface, then the resolver makes a query for IPv6
(AAAA or A6 DNS records) records.

¢ If the system is IPv4 enabled and has at least one IPv4
interface, then the resolver makes a query for IPv4 (A
DNS records) records.

AI-EXTFLAGS (X'00000080") or a decimal value of 128.
If this flag is specified, the address information structure
contains an EFLAGS field (see the field description of
EFLAGS).

Tip: To perform the binary OR'ing of the flags in this topic in a
COBOL program, add the necessary COBOL statements as in the
following example. Note that the value of the FLAGS field after the
COBOL ADD is a decimal 80 or a X'00000050" which is the sum of
OR'ing AI_ VAMAPPED and AI_ ADDRCONFIG or x'00000010" and
x'00000040':

01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

ADD AI-VAMAPPED TO FLAGS.
ADD AI-ADDRCONFG TO FLAGS.

AF A fullword binary field. Used to limit the returned information to a specific
address family. The value of AF_UNSPEC means that the caller accepts any
protocol family. The value of a decimal 0 indicates AF_UNSPEC. The value
of a decimal 2 indicates AF_INET and the value of a decimal 19 indicates
AF_INETS6.

SOCTYPE

A fullword binary field. Used to limit the returned information to a specific
socket type. A value of 0 means that the caller accepts any socket type. If a
specific socket type is not given (for example, a value of 0), information
about all supported socket types is returned.

The following are the acceptable socket types:

Type Name
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

Decimal Value Description

1 for stream socket

2 for datagram socket

3 for raw-protocol interface

Chapter 8. Sockets extended API 271

Anything else fails with return code EAI_SOCKTYPE. Although
SOCK_RAW is accepted, it is valid only when SERVICE is numeric (for
example, SERVICE=23). A lookup for a SERVICE name never occurs in the
appropriate services file (for example, hlqg. ETC.SERVICES) using any
protocol value other than SOCK_STREAM or SOCK_DGRAM. If PROTO is
nonzero and SOCKTYPE is zero, the only acceptable input values for
PROTO are IPPROTO_TCP and IPPROTO_UDP. Otherwise, the
GETADDRINFO call fails with a return code of EAI_BADFLAGS. If
SOCTYPE and PROTO are both specified as zero, GETADDRINFO
proceeds as follows:

* If SERVICE is null, or if SERVICE is numeric, any returned addrinfos
default to a specification of SOCTYPE as SOCK_STREAM.

* If SERVICE is specified as a service name (for example, SERVICE=FTP),
the GETADDRINFO call searches the appropriate services file (for
example, hlg. ETC.SERVICES) twice. The first search uses
SOCK_STREAM as the protocol, and the second search uses
SOCK_DGRAM as the protocol. No default socket type provision exists
in this case.

If both SOCTYPE and PROTO are specified as nonzero, they should be
compatible, regardless of the value specified by SERVICE. In this context,
compatible means one of the following;:

* SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP

* SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP

¢ SOCTYPE is specified as SOCK_RAW, in which case PROTO can be
anything.

PROTO
A fullword binary field. Used to limit the returned information to a specific
protocol. A value of 0 means that the caller accepts any protocol.

The following are the acceptable protocols:

Protocol Name Decimal Value Description
IPPROTO_TCP 6 TCP
IPPROTO_UDP 17 user datagram

If PROTO and SOCTYPE are both specified as zero, GETADDRINFO

proceeds as follows:

 If SERVICE is null, or if SERVICE is numeric, any returned addrinfos
default to a specification of SOCTYPE as SOCK_STREAM.

* If SERVICE is specified as a service name (for example, SERVICE=FTP),
the GETADDRINFO call searches the appropriate services file (for
example, hlg.ETC.SERVICES) file twice. The first search uses
SOCK_STREAM as the protocol, and the second search uses
SOCK_DGRAM as the protocol. No default socket type provision exists
in this case.

If both PROTO and SOCTYPE are specified as nonzero, they should be
compatible, regardless of the value specified by SERVICE. In this context,
compatible means one of the following:

¢ SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
* SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
* SOCTYPE=SOCK_RAW, in which case PROTO can be anything.

272 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

If the lookup for the value specified in SERVICE fails [that is, the service
name does not appear in the appropriate services file (for example,

hlg. ETC.SERVICES) using the input protocol], the GETADDRINFO call fails
with a return code of EAI_SERVICE.

NAMELEN
A fullword binary field followed by 8 padding bytes. On input,
this field must be 0.

CANONNAME
A fullword binary field followed by 4 padding bytes. On input,
this field must be 0.

NAME
A fullword binary field followed by 4 padding bytes. On input,
this field must be 0.

NEXT
A fullword binary field. On input, this field must be 0.

EFLAGS
A fullword binary field that specifies the source IPv6 address
selection preferences.

This field is required if AI-EXTFLAGS is specified in the FLAGS
field.

This value of this field must be 0 or the bitwise OR of one or more
of the following flags:

IPV6_PREFER_SRC_HOME
(X'00000001") or the decimal value 1 indicates that home
source IPv6 addresses are preferred over care-of source
IPv6 addresses.

IPV6_PREFER_SRC_COA
(X'00000002") or the decimal value 2 indicates that care-of
source IPv6 addresses are preferred over home source IPv6
addresses.

IPV6_PREFER_SRC_TMP
(X'00000004") or the decimal value 4 indicates that
temporary source IPv6 addresses are preferred over public
source IPv6 addresses.

IPV6_PREFER_SRC_PUBLIC
(X'00000008'") or the decimal value 8 indicates that public
source IPv6 addresses are preferred over temporary source
IPv6 addresses.

IPV6_PREFER_SRC_CGA
(X'00000010") or the decimal value 16 indicates that
cryptographically generated source IPv6 addresses are
preferred over non-cryptographically generated source IPv6
addresses.

IPV6_PREFER_SRC_NONCGA
(X'00000020") or the decimal value 32 indicates that
non-cryptographically generated source IPv6 addresses are
preferred over cryptographically generated source IPv6
addresses.

Chapter 8. Sockets extended API 273

274

RES

If contradictory or invalid EFLAGS are specified, the
GETADDRINEFO call fails with the RETCODE -1 and the ERRNO
EAI BADEXTFLAGS (decimal value 11).

* An example of contradictory EFLAGS is
IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC

* An example of invalid EFLAGS is X'00000040' or the decimal
value 64

Initially a fullword binary field. On a successful return, this field contains a
pointer to a chain of one or more addrinfo structures. The structures are
allocated in the key of the calling application. The structures returned by
GETADDRINFO are serially reusable storage for the z/OS UNIX process.
They can be used or referenced between process threads, but should not be
used or referenced between processes. When you finish using the
structures, explicitly release their storage by specifying the returned pointer
on a FREEADDRINFO. Include the EZBREHST resolver macro so that your
assembler program contains the assembler mappings for the ADDR_INFO
structure. The EZBREHST assembler macro is stored in the SYS1.MACLIB
library. Copy definitions from the EZACOBOL sample module to your
COBOL program for mapping the ADDRINFO structure. The EZACOBOL
sample module is stored in the hlg.SEZAINST library. Copy definitions
from the CBLOCK sample module to your PL/I program for mapping the
ADDRINFO structure. The CBLOCK sample module is stored in the

hlg. SEZAINST library.

Requirement: The structures returned by GETADDRINFO are a serially
reusable storage areas associated with the transaction. Do not use or
reference these structures from other transactions.

The address information structure contains the following fields:
Field Description

FLAGS
A fullword binary field that is not used as output.

AF A fullword binary field. The value returned in this field can be
used as the AF argument on the SOCKET call to create a socket
suitable for use with the returned address NAME.

SOCTYPE
A fullword binary field. The value returned in this field can be
used as the SOCTYPE argument on the SOCKET call to create a
socket suitable for use with the returned address NAME.

PROTO
A fullword binary field. The value returned in this field can be
used as the PROTO argument on the SOCKET call to create a
socket suitable for use with the returned address ADDR.

NAMELEN
A fullword binary field. The length of the NAME socket address
structure.

CANONNAME
A fullword binary field. The canonical name for the value specified
by NODE. If the NODE argument is specified, and if the
AI-CANONNAMEOK flag was specified by the HINTS argument,
the CANONNAME field in the first returned address information
structure contains the address of storage containing the canonical

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

name corresponding to the input NODE argument. If the canonical
name is not available, the CANONNAME field refers to the NODE
argument or a string with the same contents. The CANNLEN field
contains the length of the returned canonical name.

NAME
A fullword binary field followed by 4 padding bytes. The address
of the returned socket address structure. The value returned in this
field can be used as the arguments for the CONNECT, BIND, or
BIND2ADDRSEL call with this socket type, according to the
AI-PASSIVE flag.

NEXT
A fullword binary field. Contains the address of the next address
information structure on the list, or zeros if it is the last structure
on the list.

EFLAGS
A fullword binary field that is not used as output.

CANNLEN
Initially an input parameter. A fullword binary field used to contain the
length of the canonical name returned by the RES CANONNAME field.
This is an optional field.

Parameter values returned to the application for the
GETADDRINFO call

ERRNO
ERRNO A fullword binary field. If RETCODE is negative, ERRNO contains
an error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

The ADDRINFO structure uses indirect addressing to return a variable number of
NAMES. If you are coding in PL/I or assembler language, this structure can be
processed in a relatively straightforward manner. If you are coding in COBOL, this
structure might be difficult to interpret. You can use the subroutine EZACIC09 to
simplify interpretation of the information returned by the GETADDRINFO calls.

GETCLIENTID call

GETCLIENTID call returns the identifier by which the calling application is known
to the TCP/IP address space in the calling program. The CLIENT parameter is
used in the GIVESOCKET and TAKESOCKET calls. See [“GIVESOCKET call” on|
for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,
the identifier of the caller (not necessarily the client) is returned.

The following requirements apply to this call:

Chapter 8. Sockets extended API 275

WORKING-STORAGE SECTION.

01
01

01
01

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of GETCLIENTID call instructions.

SOC-FUNCTION
CLIENT.

03 DOMAIN
03 NAME

03 TASK

03 RESERVED
ERRNO
RETCODE

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION CLIENT ERRNO RETCODE.

PIC X(16) VALUE IS 'GETCLIENTID'.

PIC 9(8) BINARY.
PIC X(8).
PIC X(8).
PIC X(20).
PIC 9(8) BINARY.
PIC S9(8) BINARY.

Figure 126. GETCLIENTID call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

276

Parameter values set by the application for the GETCLIENTID

call

SOC-FUNCTION

A 16-byte character field containing 'GETCLIENTID'. The field is
left-aligned and padded to the right with blanks.

Parameter values returned to the application for the
GETCLIENTID call

CLIENT

A client-ID structure that describes the application that issued the call.

DOMAIN
On input this is an optional parameter for AF_INET, and required
parameter for AF_INET6 to specify the domain of the client. This is
a fullword binary number specifying the caller's domain. For
TCP/IP, the value is set to a decimal 2 for AF_INET or a decimal
19 for AF_INET®6.

NAME
An 8-byte character field set to the caller’s address space name.

TASK An 8-byte character field set to the task identifier of the caller.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

RESERVED
Specifies 20-byte character reserved field. This field is required, but
not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

GETHOSTBYADDR call

The GETHOSTBYADDR call returns the domain name and alias name of a host
whose Internet address is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host Internet addresses.

The address resolution depends on how the resolver is configured and if any local
host tables exist. See |z/OS Communications Server: IP Configuration Guide| for
information about configuring the resolver and using local host tables.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 127 on page 278 shows an example of GETHOSTBYADDR call instructions.

Chapter 8. Sockets extended API 277

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYADDR'.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 127. GETHOSTBYADDR call instruction example

278

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249 |

Parameter values set by the application for the
GETHOSTBYADDR call

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTBYADDR'. The field is
left-aligned and padded on the right with blanks.

HOSTADDR
A fullword binary field set to the Internet address (specified in network
byte order) of the host whose name is being sought. See
[‘Return codes,” on page 449| for information about ERRNO return codes.

Parameter values returned to the application for the
GETHOSTBYADDR call

HOSTENT
A fullword containing the address of the HOSTENT structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 An error occurred

GETHOSTBYADDR returns the HOSTENT structure shown in [Figure 128 on page|

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Hostent

Hostname »
Address of »| Name X'00'
Alias_List >
List
Address of =
_ »| Address of L—— Alias#1 X'00'
Family >
A f A 1 1
X'00000002" ddress of [—— Alias#2 X'00
Hostaddr_Len —p Address of |—— Alias#3 X'00'
X'00000004' X'00000000"
Hostaddr_List =
Address of List

A 4

Address of | INET Addri#1

Address of [INET Addr#2

Address of | INET Addr#3

X'00000000'

Figure 128. HOSTENT structure returned by the GETHOSTBYADDR call

This structure contains:

e The address of the host name that the call returns. The name length is variable
and is ended by X'00'.

e The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00".

¢ The value returned in the FAMILY field is always 2 for AF_INET.

* The length of the host Internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

* The address of a list of addresses that point to the host Internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and Internet addresses. If you are coding in PL/I or assembler
language, this structure can be processed in a relatively straightforward manner. If
you are coding in COBOL, this structure might be difficult to interpret. You can
use the subroutine EZACICO08 to simplify interpretation of the information
returned by the GETHOSTBYADDR and GETHOSTBYNAME calls. For more
information about EZACICO08, see ["EZACIC08 program” on page 402 If you are
coding in assembler, this structure is defined in the EZBREHST macro. The
EZBREHST macro is stored in SYS1.MACLIB, and r HOSTENT structure, address
information mappings, and services return codes.

Chapter 8. Sockets extended API 279

GETHOSTBYNAME call

The GETHOSTBYNAME call returns the alias name and the Internet address of a
host whose domain name is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host Internet addresses.

The name resolution attempted depends on how the resolver is configured and if
any local host tables exist. See [z/OS Communications Server: IP Configuration|
for information about configuring the resolver and using local host tables.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 129 on page 281|shows an example of GETHOSTBYNAME call instructions.

280 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYNAME'.

01
01
01
01
01

NAMELEN
NAME

HOSTENT
RETCODE

PIC 9(8) BINARY.
PIC X(255).

PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME

HOSTENT RETCODE.

Figure 129. GETHOSTBYNAME call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application for the
GETHOSTBYNAME call

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTBYNAME'. The field is
left-aligned and padded on the right with blanks.

NAMELEN
A value set to the length of the host name. The maximum is 255.

NAME
A character string, up to 255 characters, set to a host name. This call
returns the address of the HOSTENT structure for this name.

Parameter values returned to the application for the
GETHOSTBYNAME call

HOSTENT
A fullword binary field that contains the address of the HOSTENT
structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 An error occurred

Chapter 8. Sockets extended API

281

Hostent

Hostname »
Address of » Name X'00'
Alias_List >
List
Address of =
_ »| Address of |——p Alias#1 X'00'
Family >
A f A 1 1
X'00000002" ddress of L——p Alias#2 X'00
Hostaddr_Len —p Address of |—— Alias#3 X'00'
X'00000004' X'00000000"
Hostaddr_List =
Address of List
P Address of [—— INET Addr#1

Address of [INET Addr#2

Address of | INET Addr#3

X'00000000

Figure 130. HOSTENT structure returned by the GETHOSTYBYNAME call

282

GETHOSTBYNAME returns the HOSTENT structure shown in This
structure contains:

* The address of the host name that the call returns. The name length is variable
and is ended by X'00'.

e The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00".

¢ The value returned in the FAMILY field is always 2 for AF_INET.

* The length of the host Internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

* The address of a list of addresses that point to the host Internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and Internet addresses. If you are coding in PL/I or assembler
language, this structure can be processed in a relatively straightforward manner. If
you are coding in COBOL, this structure might be difficult to interpret. You can
use the subroutine EZACICO8 to simplify interpretation of the information
returned by the GETHOSTBYADDR and GETHOSTBYNAME calls. For more
information about EZACICO08, see [“EZACIC08 program” on page 402 |If you are
coding in assembler, this structure is defined in the EZBREHST macro. The
EZBREHST macro is stored in SYS1.MACLIB, and r HOSTENT structure, address
information mappings, and services return codes.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

GETHOSTID call
The GETHOSTID call returns the 32-bit IPv4 Internet address for the current host.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of GETHOSTID call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTID'.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION RETCODE.

Figure 131. GETHOSTID call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTID'. The field is left-aligned
and padded on the right with blanks.

RETCODE
Returns a fullword binary field containing the 32-bit IPv4 Internet address
of the host. There is no ERRNO parameter for this call.

GETHOSTNAME call
The GETHOSTNAME call returns the domain name of the local host.

Note: The host name that is returned is the host name that the TCPIP stack
learned at startup from the TCPIP.DATA file that was found. For more information
about hostname, see [HOSTNAME statement|in |z/OS Communications Server: IP|
[Configuration Reference]

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Chapter 8. Sockets extended API 283

Requirement Description

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of GETHOSTNAME call instructions.

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTNAME'.

01
01
01
01
01

NAMELEN
NAME
ERRNO
RETCODE

PIC 9(8) BINARY.
PIC X(24).

PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME

ERRNO RETCODE.

Figure 132. GETHOSTNAME call instruction example

284

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

Parameter values set by the application for the GETHOSTNAME
call

SOC-FUNCTION
A 16-byte character field containing GETHOSTNAME. The field is
left-aligned and padded on the right with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field. The minimum
length of the NAME field is 1 character. The maximum length of the
NAME field is 255 characters.

Parameter values returned to the application for the
GETHOSTNAME call

NAME
Indicates the receiving field for the host name. If the host name is shorter
than the NAMELEN value, then the NAME field is filled with binary zeros
after the host name. If the host name is longer than the NAMELEN value,
then the name is truncated.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |[Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

-1 Check ERRNO for an error code

GETNAMEINFO call

The GETNAMEINFO returns the node name and service location of a socket
address that is specified in the call. On successful completion, GETNAMEINFO
returns host name, host name length, service name, and service name length, if
requested, in the buffers provided.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 133 on page 286|shows an example of GETNAMEINFO call instructions.

Chapter 8. Sockets extended API 285

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETNAMEINFO'.

01 NAMELEN
01 HOST

01 HOSTLEN
01 SERVICE
01 SERVLEN
01 FLAGS

01 NI-NOFQDN

01 NI-NUMERICHOST PIC 9(8) BINARY VALUE
01 NI-NAMEREQD PIC 9(8) BINARY VALUE
01 NI-NUMERICSERVER PIC 9(8) BINARY VALUE

01 NI-DGRAM

01 NI-NUMERICSCOPE PIC 9(8) BINARY VALUE

PIC 9(8) BINARY.

PIC X(255).

PIC 9(8) BINARY.

PIC X(32).

PIC 9(8) BINARY.

PIC 9(8) BINARY VALUE
PIC 9(8) BINARY VALUE

PIC 9(8) BINARY VALUE

WO RMN—O

* IPv4 socket structure.

01 NAME.
03 FAMILY
03 PORT

PIC 9(4) BINARY.
PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket structure.

01 NAME.
03 FAMILY
03 PORT

PIC 9(4) BINARY.
PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO
01 RETCODE

PROCEDURE DIVISION

PIC 9(8) BINARY.
PIC S9(8) BINARY.

MOVE 28 TO NAMELEN.

MOVE 255 TO HOSTLEN.

MOVE 32 TO SERVLEN.

MOVE NI-NAMEREQD TO FLAGS.

CALL 'EZASOKET' USING SOC-FUNCTION NAME NAMELEN HOST

HOSTLEN

SERVICE SERVLEN FLAGS ERRNO RETCODE.

Figure 133. GETNAMEINFO call instruction example

286

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

Parameter values set by the application for the GETNAMEINFO
call

SOC-FUNCTION
A 16-byte character field containing 'GETNAMEINFO'. The field is
left-justified and padded on the right with blanks.

NAME
A socket address structure to be translated that has the following fields:
Field Description

FAMILY
A halfword binary number specifying the IPv4 addressing family.
For TCP/IP, the value is a decimal 2, indicating AF_INET.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

PORT
A halfword binary number specifying the port number.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet
address.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure specifies the following fields:
Field Description

FAMILY
A halfword binary field specifying the IPv6 addressing family. For
TCP/IP, the value is a decimal 19, indicating AF_INET®6.

PORT
A halfword binary number specifying the port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This field is not implemented.

IP-ADDRESS
A 16-byte binary field specifying the 128-bit IPv6 Internet address,
in network byte order.

SCOPE-ID
A fullword binary field that specifies the link scope for an IPv6
address as an interface index. The resolver ignores the SCOPE-ID
field, unless the address in the IP-ADDRESS field is a link-local
address and the HOST parameter is also specified.

NAMELEN

HOST

A fullword binary field. The length of the socket address structure pointed
to by the NAME argument.

On input, a storage area that is large enough to hold the returned resolved
host name. The host name can be a maximum of 255 bytes, for the input
socket address. If inadequate storage is specified to contain the resolved
host name, then the resolver returns the host name value up to the storage
amount specified and truncation can occur. If the host's name cannot be
located, the numeric form of the host's address is returned instead of its
name. However, if the NI_NAMEREQD option is specified and no host
name is located, then an error is returned. This is an optional field, but if
this field is specified, you must also code the HOSTLEN parameter. Specify
both the HOST and HOSTLEN parameters or both the SERVICE and
SERVLEN parameters. An error occurs if both are omitted.

If the IP-ADDRESS value represents a link-local address, and the
SCOPE-ID interface index is a nonzero value, scope information is
appended to the resolved host name using the format host%scope
information. The scope information can be either the numeric form of the
SCOPE-ID interface index, or the interface name associated with the
SCOPE-ID interface index.

Use the NI_NUMERICSCOPE option to select which form of scope
information should be returned. The combined host name and scope
information can be a maximum of 255 characters long. For more

Chapter 8. Sockets extended API 287

288

information about scope information and GETNAMEINFO processing, see
the |z/OS Communications Server: IPv6 Network and Application Design|
Eiuidel for more information.

HOSTLEN

An output parameter. A fullword binary field that contains the length of
the host storage (HOST parameter) used to contain the resolved host name
that is returned. The HOSTLEN value must be equal to or greater than the
length of the longest host name, or the host name and scope information
combination, to be returned. The GETNAMEINFO call returns the host
name, or hostname and scope information combination, up to the length
specified by the HOSTLEN parameter. On output, the HOSTLEN value
contains the length of the returned resolved host name, or the host name
and scope information combination. If the HOSTLEN value 0 is specified
on input, then the resolved host name is not returned. This is an optional
field, but if it is specified, you must also code the HOST parameter. Specify
both the HOST and HOSTLEN parameters or both the SERVICE and
SERVLEN parameters. An error occurs if both are omitted.

SERVICE

On input, storage capable of holding the returned resolved service name,
which can be a maximum of 32 bytes, for the input socket address. If
inadequate storage is specified to contain the resolved service name, then
the resolver returns the service name up to the storage specified and
truncation can occur. If the service name cannot be located, or if
NI_NUMERICSERV was specified in the FLAGS operand, then the
numeric form of the service address is returned instead of its name. This is
an optional field, but if specified, you must also code SERVLEN. Specify
both the HOST and HOSTLEN parameters or both the SERVICE and
SERVLEN parameters. An error occurs if both are omitted.

SERVLEN

An output parameter. A fullword binary field. The length of the SERVICE
storage used to contain the returned resolved service name. SERVLEN
must be equal to or greater than the length of the longest service name to
be returned. GETNAMEINFO returns the service name up to the length
specified by SERVLEN. On output, SERVLEN contains the length of the
returned resolved service name. If SERVLEN is 0 on input, then the service
name information is not returned. This is an optional field but if specified
you must also code SERVICE. Specify both the HOST and HOSTLEN
parameters or both the SERVICE and SERVLEN parameters. An error
occurs if both are omitted.

An input parameter. A fullword binary field. This is an optional field. The
FLAGS field must contain either a binary or decimal value, depending on
the programming language used:

Flag Name Binary Value Decimal Description
Value
‘NI_NOFQDN' X'00000001' 1 Return the NAME portion of the

fully qualified domain name.

'NI_NUMERICHOST' X'00000002' 2 Return only the numeric form of

host's address.

'NI_NAMEREQD' X'00000004" 4 Return an error if the host's

name cannot be located.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Flag Name Binary Value Decimal Description

Value
'NI_NUMERICSERV' X'00000008' 8 Return only the numeric form of
the service address.
'NI_DGRAM' X'00000010 16 Indicates that the service is a

datagram service. The default
behavior is to assume that the
service is a stream service.

'NI_NUMERICSCOPE' X'00000020' 32 Return only the numeric form of
the SCOPE-ID interface index,
when applicable.

Parameter values returned to the application for the
GETNAMEINFO call

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains an error
number. See |[Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

GETPEERNAME call

The GETPEERNAME call returns the name of the remote socket to which the local
socket is connected.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 134 on page 290 shows an example of GETPEERNAME call instructions.

Chapter 8. Sockets extended API 289

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'GETPEERNAME'.

* F

* % %

01
01

S

PIC 9(4) BINARY.

IPv4 Socket Address Structure.

01

NAME.
03 FAMILY
03 PORT

PIC 9(4) BINARY.
PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

IPv6 Socket Address Structure.

01

01
01

03 FAMILY
03 PORT

PIC 9(4) BINARY.
PIC 9(4) BINARY.

03 FLOW-INFO PIC 9(8) BINARY.
03 IP-ADDRESS.
05 FILLER PIC 9(16) BINARY.
05 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

ERRNO
RETCODE

PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 134. GETPEERNAME call instruction example

290

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application for the GETPEERNAME
call

SOC-FUNCTION
A 16-byte character field containing GETPEERNAME. The field is
left-aligned and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket
connected to the remote peer whose address is required.

Parameter values returned to the application for the
GETPEERNAME call

NAME

An IPv4 socket address structure to contain the peer name. The structure
that is returned is the socket address structure for the remote socket that is
connected to the local socket specified in field S.

FAMILY
A halfword binary field containing the connection peer’s IPv4
addressing family. The call always returns the decimal value 2,
indicating AF_INET.

PORT A halfword binary field set to the connection peer’s port number.

IP-ADDRESS
A fullword binary field set to the 32-bit IPv4 Internet address of
the connection peer’s host machine.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

RESERVED
Specifies an eight-byte reserved field. This field is required, but not
used.

An IPv6 socket address structure to contain the peer name. The structure
that is returned is the socket address structure for the remote socket that is
connected to the local socket specified in field S.

FAMILY
A halfword binary field containing the connection peer's IPv6
addressing family. The call always returns the decimal value 19,
indicating AF_INET®6.

PORT A halfword binary field set to the connection peer's port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
The value of this field is undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 Internet address of the
connection peer's host machine.

SCOPE-ID
A fullword binary field that identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID
contains the link index for the IP~-ADDRESS. For all other address
scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

GETSOCKNAME call

The GETSOCKNAME call returns the address currently bound to a specified
socket. If the socket is not currently bound to an address, the call returns with the
FAMILY field set, and the rest of the structure set to 0.

Because a stream socket is not assigned a name until after a successful call to
either BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after

an implicit bind to discover which port was assigned to the socket.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Chapter 8. Sockets extended API 291

Requirement Description

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of GETSOCKNAME call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKNAME'.

01 S

* F

01 NAME.
03 FAMILY
03 PORT

PIC 9(4) BINARY.

IPv4 Socket Address Structure.

PIC 9(4) BINARY.
PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* %

01 NAME.
03 FAMILY
03 PORT

IPv6 Socket Address Structure.

PIC 9(4) BINARY.
PIC 9(4) BINARY.

03 FLOW-INFO PIC 9(8) BINARY.
03 IP-ADDRESS.
05 FILLER PIC 9(16) BINARY.
05 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO
01 RETCODE

PROCEDURE DIVISION

PIC 9(8) BINARY.
PIC S9(8) BINARY.

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 135. GETSOCKNAME call instruction example

292

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the GETSOCKNAME
call

SOC-FUNCTION
A 16-byte character field containing GETSOCKNAME. The field is
left-aligned and padded on the right with blanks.

S A halfword binary number set to the descriptor of a local socket whose
address is required.

Parameter values returned to the application for the
GETSOCKNAME call

NAME
Specifies the IPv4 socket address structure returned by the call.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

FAMILY
A halfword binary field containing the addressing family. The call
always returns the decimal value 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this
socket. If the socket is not bound, zero is returned.

IP-ADDRESS
A fullword binary field set to the 32-bit IPv4 Internet address of
the local host machine. If the socket is not bound, the address is
the IPv6 unspecified address (in6addr_any).

RESERVED
Specifies 8 bytes of binary zeros. This field is required but not
used.

Specifies the IPv6 socket address structure returned by the call.

FAMILY
A halfword binary field containing the addressing family. The call
always returns the decimal value of 19, indicating AF_INETS6.

PORT
A halfword binary field set to the port number bound to this
socket. If the socket is not bound, zero is returned.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
The value of this field is undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 Internet address of the

local host machine. If the socket is not bound, the address is
IN6ADDR_ANY.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID
contains the link index for the IP-ADDRESS. For all other address
scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call

-1 Check ERRNO for an error code

GETSOCKOPT call
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described in this
topic. You must specify the option to be queried when you issue the
GETSOCKOPT call.

Chapter 8. Sockets extended API 293

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of GETSOCKOPT call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKOPT'.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.
01 OPTVAL PIC 9(8) BINARY.
01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME
OPTVAL OPTLEN ERRNO RETCODE.

Figure 136. GETSOCKORPT call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

Parameter values set by the application for the GETSOCKOPT
call

SOC-FUNCTION
A 16-byte character field containing GETSOCKOPT. The field is left-aligned
and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
requiring options.
OPTNAME

Input parameter. Set OPTNAME to the required option before you issue
GETSOCKOPT. See [“Parameter values returned to the application for the|
[GETSOCKOPT call” on page 295| for a list of the options and their unique
requirements. See [Appendix C, “GETSOCKOPT /SETSOCKOPT command|
[values,” on page 465| for the numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underscore
character. Fields representing the option name should contain dashes
instead.

294 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Parameter values returned to the application for the
GETSOCKOPT call

OPTVAL

Output parameter. Contains the status of the specified option. See the table
in this topic for a list of the options and their unique requirements

OPTLEN

Output parameter. A fullword binary field containing the length of the data
returned in OPTVAL. See the table in this topic for how to determine the
value of OPTLEN.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an
error number. See |Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following;:

Value Description

0 Successful call.

-1

Check ERRNO for an error code.

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IP_ADD_MEMBERSHIP Contains the IP_MREQ structure N/A
as defined in
Use this option to enable an application to | 5YS1.MACLIB(BPXYSOCK). The
join a multicast group on a specific IP_MREQ structure contains a
interface. An interface has to be specified 4-byte IPv4 multicast address
with this option. Only applications that followed by a 4-byte IPv4 interface
want to receive multicast datagrams need to | 3ddress.
join multicast groups.
See SEZAINST(CBLOCK) for the
This is an IPv4-only socket option. PL/I example of IP_MREQ.
See SEZAINST(EZACOBOL) for
the COBOL example of I>-MREQ.
IP_ADD_SOURCE_MEMBERSHIP Contains the IP_ MREQ_SOURCE |[N/A

Use this option to enable an application to
join a source multicast group on a specific
interface and a specific source address. You
must specify an interface and a source
address with this option. Applications that
want to receive multicast datagrams need to
join source multicast groups.

This is an IPv4-only socket option.

structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte IPv4
source address and a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.

Chapter 8. Sockets extended API 295

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IP_BLOCK_SOURCE Contains the IP_ MREQ_SOURCE |N/A
structure as defined in
Use this option to enable an application to | 5YS1. MACLIB(BPXYSOCK). The
block multicast packets that have a source | [P_MREQ SOURCE structure
address that matches the given IPv4 source |contains a 4-byte TPv4 multicast
address. You must specify an interface and a | 3ddress followed by a 4-byte IPv4
source address with this option. The source address and a 4-byte IPv4
specified multicast group must have been interface address.
joined previously.
See SEZAINST(CBLOCK) for the
This is an IPv4-only socket option. PL/I example of
IP_MREQ_SOURCE.
See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.
IP_DROP_MEMBERSHIP Contains the IP_MREQ structure |N/A
as defined in
Use this option to enable an application to | §YS1 MACLIB(BPXYSOCK). The
exit a multicast group or to exit all sources | [P_MREQ structure contains a
for a multicast group. 4-byte IPv4 multicast address
L. . followed by a 4-byte IPv4 interface
This is an IPv4-only socket option. address.
See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.
See SEZAINST(EZACOBOL) for
the COBOL example of IP-MREQ.
IP_DROP_SOURCE_MEMBERSHIP Contains the IP._ MREQ_SOURCE |N/A

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte IPv4
source address and a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending outbound
multicast datagrams from the socket
application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a time.

A 4-byte binary field containing an
IPv4 interface address.

A 4-byte binary field containing an
IPv4 interface address.

296

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams are

looped back for multicast datagrams sent to

a group to which the sending host itself
belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.
If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_ MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte IPv4
source address and a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.

Chapter 8. Sockets extended API 297

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IPV6_ADDR_PREFERENCES

Use this option to query or set IPv6 address
preferences of a socket. The default source
address selection algorithm considers these
preferences when it selects an IP address
that is appropriate to communicate with a
given destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences. The
stack could assign a source IP address that
does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source IP
address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:

IPV6_PREFER_SRC_HOME
(X'00000001")
Prefer home address

IPV6_PREFER_SRC_COA
(X'00000002")
Prefer care-of address

IPV6_PREFER_SRC_TMP
(X'00000004")
Prefer temporary address

IPV6_PREFER_SRC_PUBLIC
(X'00000008")
Prefer public address

IPV6_PREFER_SRC_CGA
(X'00000010")
Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020")
Prefer
non-cryptographically
generated address

Some of these flags are
contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:

IPV6_PREFER_SRC_HOME
(X'00000001")
Prefer home address

IPV6_PREFER_SRC_COA
(X'00000002")
Prefer care-of address

IPV6_PREFER_SRC_TMP
(X'00000004")
Prefer temporary address

IPV6_PREFER_SRC_PUBLIC
(X'00000008")
Prefer public address

IPV6_PREFER_SRC_CGA
(X'00000010")
Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020")
Prefer
non-cryptographically
generated address

See IPV6_ADDR_ PREFERENCES
and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

298

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the socket
join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
IPV6-MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the socket
leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
IPV6-MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is 1
hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit
range.

Note: An application must be APF
authorized to enable it to set the
hop limit value above the system
defined hop limit value. CICS
applications cannot execute as APF
authorized.

Contains a 4-byte binary value in
the range 0 — 255 indicating the
number of multicast hops.

Chapter 8. Sockets extended API 299

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index of
the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface index
number.

Contains a 4-byte binary field
containing an IPv6 interface index
number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams are
sent to a group to which the sending host
itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop limit
used for outgoing unicast IPv6 packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If not
specified, then the default is 1 hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit
range.

Note: APF authorized applications
are permitted to set a hop limit
that exceeds the system configured
default. CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 — 255 indicating the
number of unicast hops.

IPV6_V60ONLY

Use this option to set or determine whether
the socket is restricted to send and receive
only IPv6 packets. The default is to not
restrict the sending and receiving of only
IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

300

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

MCAST_BLOCK_SOURCE Contains the N/A
GROUP_SOURCE_REQ structure
Use this option to enable an application to |35 defined in
block multicast packets that have a source SYS1.MACLIB(BPXYSOCK). The
address that matches the given source GROUP_SOURCE_REQ structure
address. You must specify an interface index | contains a 4-byte interface index
and a source address with this option. The | number followed by a socket
specified multicast group must have been address structure of the multicast
joined previously. address and a socket address
structure of the source address.
See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.
See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.
MCAST_JOIN_GROUP Contains the GROUP_REQ N/A
structure as defined in
Use this option to enable an application to | 5YS1.MACLIB(BPXYSOCK). The
join a multicast group on a specific GROUP_REQ structure contains a
interface. You must specify an interface 4-byte interface index number
index. Applications that want to receive followed by a socket address
multicast datagrams must join multicast structure of the multicast address.
groups.
See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.
See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-REQ.
MCAST_JOIN_SOURCE_GROUP Contains the N/A

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the multicast
address and a socket address
structure of the source address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.

Chapter 8. Sockets extended API 301

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources for
a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains a
4-byte interface index number
followed by a socket address
structure of the multicast address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the multicast
address and a socket address
structure of the source address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given multicast group. You must specify an
interface index and a source address with
this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the multicast
address and a socket address
structure of the source address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.

N/A

302

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to ASCII.
When SO_ASCII is not set, data is not
translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

SO_BROADCAST

Use this option to set or determine whether
a program can send broadcast messages
over the socket to destinations that can
receive datagram messages. The default is
disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Note:
1. This is a REXX-only socket option.

2. This option has meaning only for stream
sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set, data
is not translated to or from EBCDIC. This
option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

SO_ERROR

Use this option to request pending errors on
the socket or to check for asynchronous
errors on connected datagram sockets or for
other errors that are not explicitly returned
by one of the socket calls. The error status is
clear afterwards.

N/A

A 4-byte binary field containing
the most recent ERRNO for the
socket.

Chapter 8. Sockets extended API 303

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_KEEPALIVE

Use this option to set or determine whether

the keep alive mechanism periodically sends
a packet on an otherwise idle connection for
a stream socket.

The default is disabled.

When activated, the keep alive mechanism
periodically sends a packet on an otherwise
idle connection. If the remote TCP does not
respond to the packet or to retransmissions
of the packet, the connection is terminated
with the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine how
TCP/IP processes data that has not been
transmitted when a CLOSE is issued for the
socket. The default is disabled.

Note:
1. This option has meaning only for stream
sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is in
nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send data
for a specified time. This usually allows
sufficient time to complete the data transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field containing
two 4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable this
option. Set LINGER to the number
of seconds that TCP/IP lingers
after the CLOSE is issued.

Contains an 8-byte field containing
two 4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

304

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.
Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data is
placed in the normal data input queue as it
is received and is available to a RECV or a
RECVFROM even if the OOB flag is not set
in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available to a
RECV or a RECVFROM only when the OOB
flag is set in the RECV or the RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine the
size of the data portion of the TCP/IP
receive bulffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

¢ TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP Socket

¢ UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

* The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP receive
buffer.

If disabled, contains a 0.

Chapter 8. Sockets extended API 305

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_RCVTIMEO

Use this option to control or determine the
maximum length of time that a receive-type
function can wait before it completes.

If a receive-type function has blocked for
the maximum length of time that was
specified without receiving data, control is
returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a
receive-type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout takes
precedence. The receive-type function can
return the partial count. See the explanation
of that operation's MSG_WAITALL flag
parameter.

The following receive-type functions are
supported:

* READ

* READV

* RECV

* RECVFROM
* RECVMSG

This option requires a TIMEVAL
structure, which is defined in
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds can be a value in the
range 0 - 2678400 (equal to 31
days), and the microseconds can
be a value in the range 0 - 1000000
(equal to 1 second). Although
TIMEVAL value can be specified
using microsecond granularity, the
internal TCP/IP timers that are
used to implement this function
have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in the
SYS1.MACLIB(BPXYRLIM) macro.
The TIMEVAL structure contains
the number of seconds and
microseconds, which are specified
as fullword binary numbers. The
number of seconds value that is
returned is in the range 0 -
2678400 (equal to 31 days). The
number of microseconds value
that is returned is in the range O -
1000000.

306

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be bound
only once. If the address and port have been
already bound, then a subsequent BIND will
fail and result error will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

¢ A server can BIND the same port
multiple times as long as every invocation
uses a different local IP address and the
wildcard address INADDR_ANY is used
only one time per port.

* A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

 For datagram sockets, multicasting is
supported so multiple bind() calls can be
made to the same class D address and
port number.

¢ If you require multiple servers to BIND to
the same port and listen on
INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine the
size of the data portion of the TCP/IP send
buffer. The size is of the TCP/IP send buffer
is protocol specific and is based on the
following:

¢ The TCPSENDBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP socket

¢ The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP socket

* The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

Chapter 8. Sockets extended API 307

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_SNDTIMEO

Use this option to control or determine the
maximum length of time that a send-type
function can remain blocked before it
completes.

If a send-type function has blocked for this
length of time, it returns with a partial
count or, if no data is sent, with an errno set
to EWOULDBLOCK. The default value for
this is 0, which indicates that a send-type
function does not time out.

For a SETSOCKOPT, the following
send-type functions are supported:

* SEND
SENDMSG
* SENDTO
* WRITE
 WRITEV

This option requires a TIMEVAL
structure, which is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0 -
2678400 (equal to 31 days), and the
microseconds value is in the range
0 - 1000000 (equal to 1 second).
Although the TIMEVAL value can
be specified using microsecond
granularity, the internal TCP/IP
timers that are used to implement
this function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains the
number of seconds and
microseconds, which are specified
as fullword binary numbers. The
number of seconds value that is
returned is in the range 0 -
2678400 (equal to 31 days). The
microseconds value that is
returned is in the range 0 -
1000000.

SO_TYPE

Use this option to return the socket type.

N/A

A 4-byte binary field indicating the
socket type:

X'1" indicates SOCK_STREAM.
X'2" indicates SOCK_DGRAM.

X'3" indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine whether
a socket-specific timeout value (in seconds)
is to be used in place of a
configuration-specific value whenever keep
alive timing is active for that socket.

When activated, the socket-specified timer
value remains in effect until respecified by
SETSOCKOPT or until the socket is closed.
See the [z/OS Communications Server: IP|
[Programmer's Guide and Reference| for
more information about the socket option
parameters.

A 4-byte binary field.

To enable, set to a value in the
range of 1 - 2147460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is in
effect for the given socket.

If disabled, contains a 0 indicating
keep alive timing is not active.

308

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 21. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

TCP_NODELAY

Use this option to set or determine whether
data sent over the socket is subject to the
Nagle algorithm (RFC 896).

Under most circumstances, TCP sends data
when it is presented. When this option is
enabled, TCP will wait to send small
amounts of data until the acknowledgment
for the previous data sent is received. When
this option is disabled, TCP will send small
amounts of data even before the
acknowledgment for the previous data sent

A 4-byte binary field.
To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.
If enabled, contains a 0.

If disabled, contains a 1.

is received.

Note: Use the following to set
TCP_NODELAY OPTNAME value for

COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP

VALUE 2147483649.

01 TCP-NODELAY-REDEF REDEFINES

TCP-NODELAY-VAL.

05 FILLER PIC 9(6) BINARY.
05 TCP-NODELAY PIC 9(8) BINARY.

GIVESOCKET call

The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process
that has the same descriptors as the parent process. You can use this new child
process in the same way that you used the parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in
the following sequence:

1.

6.

A process issues a GETCLIENTID call to get the job name of its region and its
MVS subtask identifier. This information is used in a GIVESOCKET call.

The process issues a GIVESOCKET call to prepare a socket for use by a child
process.

The child process issues a TAKESOCKET call to get the socket. The socket now
belongs to the child process, and can be used by TCP/IP to communicate with
another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.
The child process must use this new socket descriptor for all calls that use this
socket. The socket descriptor that was passed to the TAKESOCKET call must
not be used.

After issuing the GIVESOCKET command, the parent process issues a SELECT
command that waits for the child to get the socket.

When the child gets the socket, the parent receives an exception condition that
releases the SELECT command.

The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Chapter 8. Sockets extended API 309

Sockets which have been given, but not taken for a period of four days, are closed
and are no longer be available for taking. If a select for the socket is outstanding, it
is posted.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of GIVESOCKET call instructions.

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'GIVESOCKET'.

01
01
01

01
01

S

CLIENT.

03 DOMAIN
03 NAME
03 TASK

PIC 9(4) BINARY.

PIC 9(8) BINARY.
PIC X(8).
PIC X(8).

03 RESERVED PIC X(20).

ERRNO
RETCODE

PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 137. GIVESOCKET call instruction example

310

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the GIVESOCKET call

SOC-FUNCTION
A 16-byte character field containing 'GIVESOCKET'. The field is
left-aligned and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
given.
CLIENT

A structure containing the identifier of the application to which the socket
should be given.

DOMAIN
A fullword binary number that must be set to a decimal 2,
indicating AF_INET, or a decimal 19, indicating AF_INET®6.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Rule: A socket given by GIVESOCKET can be taken only by a
TAKESOCKET with the same DOMAIN, address family (such as,
AF_INET or AF_INETS).

NAME
Specifies an 8-character field, left-aligned, padded to the right with
blanks, that can be set to the name of the MVS address space that
contains the application that is going to take the socket.

* If the socket-taking application is in the same address space as
the socket-giving application (as in CICS), NAME can be
specified. The socket-giving application can determine its own
address space name by issuing the GETCLIENTID call.

* If the socket-taking application is in a different MVS address
space (as in IMS), this field should be set to blanks. When this is
done, any MVS address space that requests the socket can have
it.

TASK Specifies an 8-character field that can be set to blanks, or to the
identifier of the socket-taking MVS subtask. If this field is set to
blanks, any subtask in the address space specified in the NAME
field can take the socket.

* If used by CICS IP sockets, the field should be set to blanks.
 If TASK identifier is nonblank, the socket-receiving task should
already be in execution when the GIVESOCKET is issued.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application for the
GIVESOCKET call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

INET6_IS_SRCADDR call

The INET6_IS_SRCADDR call tests whether the input IP address matches an IP
address in the node that conforms to all IPV6_ADDR_PREFERENCES flags
specified in the call. You can use this call with IPv6 addresses or with
IPv4-mapped IPv6 addresses.

You can use this call to test local IP addresses to verify that these addresses have
the characteristics required by your application.

Tip: See RFC 5014 IPv6 Socket API for Source Address Selection for more information
about the INET6_IS_SRCADDR call. See [Appendix F, “Related protocoll
[specifications,” on page 639| for information about accessing RFCs.

The following requirements apply to this call:

Chapter 8. Sockets extended API 311

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of INET6_IS_SRCADDR call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'INET6_IS SRCADDR'.
* IPv6 socket address structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 FLAGS PIC 9(8) BINARY
88 IPV6-PREFER-SRC-HOME PIC 9(8) BINARY VALUE 1.
88 IPV6-PREFER-SRC-COA PIC 9(8) BINARY VALUE 2.
88 IPV6-PREFER-SRC-TMP PIC 9(8) BINARY VALUE 4.
88 IPV6-PREFER-SRC-PUBLIC PIC 9(8) BINARY VALUE 8.
88 IPV6-PREFER-SRC-CGA PIC 9(8) BINARY VALUE 16.
88 IPV6-PREFER-SRC-NONCGA PIC 9(8) BINARY VALUE 32.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL '"EZASOKET' USING SOC-FUNCTION NAME FLAGS ERRNO RETCODE.

Figure 138. INET6_IS_SRCADDR call instruction example

312

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249]

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing INET6_IS_SRCADDR.

NAME
Specifies the AF_INET6 socket address structure for the address that is to
be tested.

Requirement: You must specify an AF_INET6 address. You can specify an
IPv6 address or an IPv4-mapped IPv6 address.

The IPv6 socket address structure specifies the following fields:

Field Description

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

FAMILY
A halfword binary field specifying the IPv6 addressing family. For
TCP/IP, the value is decimal 19, indicating AF_INET®6.

PORT A halfword binary field. This field is ignored by
INET6_IS_SRCADDR processing.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This field is ignored by INET6_IS_SRCADDR processing.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address (network byte order) of the IP address to be tested.

Rule: Specify an IPv4 address by using its [Pv4-mapped IPv6
address format.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. The value 0 indicates that the SCOPE-ID
field does not identify the set of interfaces to be used.

Requirements:
e If the IP address is a link-local address, this field must be set to
a nonzero value.

e If the IP address is not a link-local address, this field must be set
to 0.

FLAGS
A fullword binary field containing one or more
IPV6_ADDR_PREFERENCES flags. The following table defines the valid
IPV6_ADDR_PREFERENCES flags.

Flag name Binary value Decimal value Description

IPV6-PREFER-SRC-HOME x'00000001" 1 Test whether the
input IP address
is a home
address.'

IPV6-PREFER-SRC-COA x'00000002' 2 Test whether the
input IP address
is a care-of
address.?

IPV6-PREFER-SRC-TMP x'00000004' 4 Test whether the
input IP address
is a temporary
address.

IPV6-PREFER-SRC-PUBLIC x'00000008"' 8 Test whether the
input IP address
is a public
address.

IPV6-PREFER-SRC-CGA x'00000010' 16 Test whether the
input IP address
is
cryptographically
generated.’

Chapter 8. Sockets extended API 313

314

stack.

Flag name Binary value Decimal value |Description

IPV6-PREFER-SRC-NONCGA x'00000020' 32 Test whether the
input IP address
is not
cryptographically
generated.'

Note:

1. Any valid IP address that is known to the stack satisfies this flag.

2. z/0S Communications Server does not support this type of address. The call always
returns FALSE when this flag is specified with a valid IP address that is known to the

Tips:

e The samples SEZAINST(EZACOBOL) and SEZAINST(CBLOCK) contain
mappings for these flags.

* Some of these flags are contradictory. For example:
— The flag IPV6_PREFER_SRC_HOME contradicts the flag

IPV6_PREFER_SRC_COA.

— The flag IPV6_PREFER_SRC_CGA contradicts the flag

IPV6_PREFER_SRC_NONCGA.

— The flag IPV6_PREFER_SRC_TMP contradicts the flags

IPV6_PREFER_SRC_PUBLIC.

Result: If you specify contradictory flags in the call, the result is FALSE.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an
error number. See [Appendix F, “Related protocol specifications,” on page]
for information about ERRNO return codes.

RETCODE

A fullword binary field that is set to one of the following values:

Value Description

0

-1

FALSE

The call was successful and the result is FALSE. The input
AF_INET6 address corresponds to an IP address on the node, but
does not conform to one or more of the
IPV6_ADDR_PREFERENCES flags specified in the call.

TRUE

The call was successful, and the result is TRUE. The input
AF_INET6 address corresponds to an IP address on the node, and
conforms to all the IPV6_ADDR_PREFERENCES flags specified in
the call.

Check ERRNO for an error code.

INITAPI and INITAPIX calls
The INITAPI and INITAPIX calls connect an application to the TCP/IP interface.
The sole difference between INITAPI and INITAPIX is explained in the description
of the IDENT parameter. INITAPI is preferred over INITAPIX unless there is a
specific need to connect applications to alternate TCP/IP stacks. CICS sockets

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

programs that are written in COBOL, PL/I, or assembler language should issue the
INITAPT or INITAPIX macro before they issue other calls to the CICS sockets
interface.

If a CICS task's first call to the CICS socket interface is not an INITAPI or
INITAPIX, then the CICS socket interface generates a default INITAPI call.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 139 on page 316 shows an example of INITAPI call instructions. The same
example can be used for the INITAPIX call by simply changing the
SOC-FUNCTION value to 'INITAPIX'".

Chapter 8. Sockets extended API 315

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'INITAPI'.

01 MAXSOC-FWD PIC 9(8) BINARY.
01 MAXSOC-RDF REDEFINES MAXSOC-FWD.
02 FILLER PIC X(2).
02 MAXSOC PIC 9(4) BINARY.
01 IDENT.

02 TCPNAME PIC X(8).
02 ADSNAME PIC X(8).

01 SUBTASK PIC X(8).

01 MAXSNO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL "EZASOKET' USING SOC-FUNCTION MAXSOC IDENT SUBTASK

MAXSNO ERRNO RETCODE.

Figure 139. INITAPI call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

316

Parameter values set by the application for the INITAPI and
INITAPIX calls

SOC-FUNCTION

A 16-byte character field containing INITAPI or INITAPIX. The field is left
justified and padded on the right with blanks.

MAXSOC

IDENT

A halfword binary field set to the maximum number of sockets this
application ever has open at one time. The maximum number is 65535 and
the minimum number is 50. This value is used to determine the amount of
memory that is allocated for socket control blocks and buffers. If less than
50 are requested, MAXSOC defaults to 50.

A 16-byte structure containing the name of the TCP/IP address space
(TCPNAME) and the name of calling program's address space
(ADSNAME).

The way that the CICS socket interface handles the TCPNAME part of the
structure differs between INITAPI and INITAPIX (as explained in the
following description of TCPNAME).

TCPNAME
An 8-byte character field which should be set to the MVS jobname
of the TCP/IP address space with which you are connecting.

If the function is INITAPI, then the CICS socket interface always
overrides this with the value in the TCPADDR configuration
parameter. The TCPNAME passed by the application program on
an INITAPIX call overrides the TCPADDR value.

ADSNAME
An 8-byte character field set to the identity of the calling program's
address space. It is the name of the CICS startup job. The CICS
socket interface always overrides this value with VTAM APPLID of
the CICS address space. For explicit-mode IMS server programs,

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

use the TIMSrvAddrSpc field passed in the TIM. If ADSNAME is
not specified, the system derives a value from the MVS control
block structure.

SUBTASK
Indicates an 8-byte field containing a unique subtask identifier that is used
to distinguish between multiple subtasks within a single address space. For
your subtask name, use the zoned decimal value of the CICS task ID
(EIBTASKN), plus a unique displayable character. In CICS, if no value is
specified, the zoned-decimal value of the CICS task ID appended with the
letter C is used.

Result: Using the letter L as the last character in the subtask parameter
causes the tasking mechanism to assume the CICS transaction is a listener
and schedule it using a non-reusable subtask by way of MVS attach
processing when OTE=NO. This has no effect when OTE=YES.

Parameter values returned to the application for the INITAPI and
INITAPIX calls

MAXSNO
A fullword binary field that contains the highest socket number assigned
to this application. The lowest socket number is zero. If you have 50
sockets, they are numbered from 0 to 49. If MAXSNO is not specified, the
value for MAXSNO is 49.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call

-1 Check ERRNO for an error code

IOCTL call

The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL call, you must load a value representing the
characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are
passed to and returned from IOCTL. The length of REQARG and RETARG is
determined by the value that you specify in COMMAND. See [Table 22 on page 326|
for information about REQARG and RETARG.

The following requirements apply to this call:

Requirement Requirement

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Chapter 8. Sockets extended API 317

Requirement

Requirement

Amode:

31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]
[requirements for the Callable Socket API” on page 245 |

ASC mode:

Primary address space control (ASC) mode

Interrupt status:

Enabled for interrupts

Locks:

Unlocked

Control parameters:

All parameters must be addressable by the caller and in the
primary address space

shows an example of IOCTL call instructions.

WORKING-STORAGE SECTION.

01 SOKET-FUNCTION PIC
01 S PIC
01 COMMAND PIC
01 IFREQ.

05 NAME PIC
05 FAMILY PIC
05 PORT PIC
05 ADDRESS PIC
05 FILLER PIC
01 IFREQOUT.

05 NAME PIC
05 FAMILY PIC
05 PORT PIC
05 ADDRESS PIC
05 FILLER PIC

01 GRP-IOCTL-TABLE.

X(16)
9(4)
9(4)

X(16).
9(4)
9(4)
9(8)
X(8).

X(16).
9(4)
9(4)
9(8)
X(8).

VALUE 'IOCTL'.

BINARY.
BINARY.

BINARY.
BINARY.
BINARY.

BINARY.
BINARY.
BINARY.

05 TOCTL-ENTRY OCCURS 1 TO max TIMES DEPENDING ON count.

10 NAME PIC X(16).
10 FAMILY PIC 9(4) BINARY.
10 PORT PIC 9(4) BINARY.
10 ADDRESS PIC 9(8) BINARY.
10 FILLER PIC X(8).
01 IOCTL-REQARG USAGE IS POINTER.
01 IOCTL-RETARG USAGE IS POINTER.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

CALL "EZASOKET' USING SOC-FUNCTION S COMMAND REQARG

RETARG ERRNO RETCODE.

Figure 140. IOCTL call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

318 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Parameter values set by the application for the IOCTL call

SOC-FUNCTION
A 16-byte character field containing IOCTL. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to be
controlled.
COMMAND

To control an operating characteristic, set this field to one of the following
symbolic names. A value in a bit mask is associated with each symbolic
name. By specifying one of these names, you are turning on a bit in a
mask that communicates the requested operating characteristic to TCP/IP.

FIONBIO
Sets or clears blocking status.

FIONREAD
Returns the number of immediately readable bytes for the socket.

SIOCGHOMEIF6
Requests all IPv6 home interfaces. When the SIOCGHOMEIF6
IOCTL is issued, the REQARG must contain a Network
Configuration Header. The NETCONFHDR is defined in
SYS1.MACLIB(BPXYIOCS6) for Assembler programs.

To request OSM interfaces the application must have READ
authorization to the EZB.OSM.sysname.tcpname resource.

Requirement: The following input fields must be filled out:

NchEyeCatcher
Contains eye catcher '6NCH'.

Nchloctl
Contains the command code.

NchBufferLength
Buffer length large enough to contain all the IPv6 interface
records. Each interface record is length of
HOME-IF-ADDRESS. If buffer is not large enough, then
errno is set to ERANGE and the NchNumEntryRet is set to
number of interfaces. Based on NchNumEntryRet and size
of HOME-IF-ADDRESS, calculate the necessary storage to
contain the entire list.

NchBufferPtr
This is a pointer to an array of HOME-IF structures
returned on a successful call. The size depends on the
number of qualifying interfaces returned.

NchNumEntryRet
If return code is zero, this is set to number of
HOME-IF-ADDRESS returned. If errno is ERANGE, then
this is set to number of qualifying interfaces. No interfaces
are returned. Recalculate the NchBufferLength based on
this value times the size of HOME-IF-ADDRESS.

Chapter 8. Sockets extended API 319

Working-Storage Section.

01 SIOCGHOMEIF6 PIC X(4) VALUE X'CO14F608'.

Linkage Section.

01 LI.
03 NetConfHdr.
05 NchEyeCatcher pic x(4).
05 Nchloctl pic 9(8) binary.
05 NchBufferLength pic 9(8) binary.
05 NchBufferPtr usage is pointer.
05 NchNumEntryRet pic 9(8) binary.

* Allocate storage based on your need.
03 Allocated-Storage pic x(nn).

Procedure Division using L1.

move '6NCH' to NchEyeCatcher.
set NchBufferPtr to address of Allocated-Storage.

Set NchBufferLength to the length of your allocated storage.

move nn to NchBufferLength.

move SIOCGHOMEIF6 to NchIoctl.

Call 'EZASOKET' using soket-ioctl socket-descriptor
SIOCGHOMEIF6
NETCONFHDR NETCONFHDR
errno retcode.

Figure 141. COBOL language example for SSIOCGHOMEIF6

REQARG and RETARG
Point to the arguments that are passed between the calling
program and IOCTL. The length of the argument is
determined by the COMMAND request. REQARG is an
input parameter and is used to pass arguments to IOCTL.
RETARG is an output parameter and is used for arguments
returned by IOCTL. For the lengths and meanings of
REQARG and RETARG for each COMMAND type, see
[Table 22 on page 326]

SIOCATMARK
Determines whether the current location in the data input is
pointing to out-of-band data.

SIOCGIFADDR
Requests the network interface address for a given interface name.
See the following source members for a description of the
REQARG value of this IOCTL command:

¢ For assembler, see the IOCN_IFNAME field in
SYS1.MACLIB(BPXYIOCC).

¢ For COBOL, see the IFR-NAME field in
SEZAINST(EZACOBOL).

* For PL/I, see the IFR_NAME field in SEZAINST(CBLOCK).

SIOCGIFBRDADDR
Requests the network interface broadcast address for a given

320 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

interface name. See the following source members for a description
of the REQARG value of this IOCTL command:

¢ For assembler, see the IOCN_IFNAME field in
SYS1.MACLIB(BPXYIOCC).

¢ For COBOL, see the IFR-NAME field in
SEZAINST(EZACOBOL).

* For PL/I, see the IFR_NAME field in SEZAINST(CBLOCK).

SIOCGIFCONF
Requests the network interface configuration. The configuration
consists of a variable number of 32-byte structures. The
SIOCGIFCONEF structure is specified the REQARG value for this
IOCTL command. For assembler, see the IOCN_IFREQ field in
SYS1.MACLIB(BPXYIOCC) for the structure format. For COBOL,
see IFREQ in SEZAINST(EZACOBOL) for the structure format. For
PL/I, see IFREQ in SEZAINST(CBLOCK) for the structure format.

When IOCTL is issued, the REQARG field must contain the length
of the array to be returned. To determine the length of REQARG,
multiply the structure length (array element) by the number of
interfaces that is being requested. The maximum number of array
elements that TCP/IP can return is 100.

When IOCTL is issued, the RETARG field must be set to the
beginning portion of the storage area that you have defined in
your program for the array to be returned.

SIOCGIFDSTADDR
Requests the network interface destination address for a given
interface name. See the following source members for a description
of this IOCTL commands REQARG value:

¢ For assembler, see the IOCN_IFNAME field in
SYS1.MACLIB(BPXYIOCC).

¢ For COBOL, see the IFR-NAME field in
SEZAINST(EZACOBOL).

* For PL/I, see the IFR_NAME field in SEZAINST(CBLOCK).

SIOCGIFMTU
Requests the IPv4 network interface MTU (maximum transmission
unit) for a given interface name. See the following source members

for a description the REQARG value of this IOCTL command:

¢ For assembler, see the IOCN_IFNAME field in
SYS1.MACLIB(BPXYIOCC).

¢ For COBOL, see the IFR-NAME field in
SEZAINST(EZACOBOL).

* For PL/I, see the IFR_NAME field in SEZAINST(CBLOCK).

SIOCGIFNAMEINDEX
Requests all interface names and indexes including local loopback
but excluding VIPAs. Information is returned for both IPv4 and
IPv6 interfaces whether they are active or inactive. For IPv6
interfaces, information is returned for an interface only if it has at
least one available IP address. The configuration consists of the
IF_NAMEINDEX structure [defined in SYS1.MACLIB(BPX1IOCC)
for assembler programs].

Chapter 8. Sockets extended API 321

¢ When the SIOCGIFNAMEINDEX IOCTL is issued, the first word
in REQARG must contain the length (in bytes) to contain an
IF-NAME-INDEX structure to return the interfaces. The
following steps describe how to compute this length is as
follows:

1. Determine the number of interfaces expected to be returned
upon successful completion of this command.

2. Multiply the number of interfaces by the array element (size
of IF-NIINDEX, IF-NINAME, and IF-NIEXT) to get the size
of the array element.

3. To the size of the array, add the size of IF-NITOTALIF and
IF-NIENTRIES to get the total number of bytes needed to
accommodate the name and index information returned.

¢ When IOCTL is issued, RETARG must be set to the address of
the beginning of the area in your program's storage that is
reserved for the IFFNAMEINDEX structure that IOCTL returns.

* The 'SIOCGIFNAMEINDEX' command returns a variable
number of all the qualifying network interfaces.

To request OSM interfaces the application must have READ
authorization to the EZB.OSM.sysname.tcpname resource.

WORKING-STORAGE SECTION.
01 SIOCGIFNAMEINDEX PIC X(4) VALUE X'4000F603'.

01 reqarg pic 9(8) binary.
01 reqgarg-header-only pic 9(8) binary.
01 IF-NIHEADER.
05 IF-NITOTALIF PIC 9(8) BINARY.
05 TIF-NIENTRIES PIC 9(8) BINARY.
01 IF-NAME-INDEX-ENTRY.
05 IF-NIINDEX PIC 9(8) BINARY.
05 IF-NINAME PIC X(16).
05 TIF-NINAMETERM PIC X(1).
05 IF-NIRESV1 PIC X(3).
01 OUTPUT-STORAGE PIC X(500).

Procedure Division.

move 8 to reqarg-header-only.

Call 'EZASOKET' using soket-ioctl socket-descriptor
SIOCGIFNAMEINDEX
REQARG-HEADER-ONLY IF-NIHEADER
errno retcode.

move 500 to reqarg.

Call '"EZASOKET' using soket-ioctl socket-descriptor
SIOCGIFNAMEINDEX
REQARG OUTPUT-STORAGE
errno retcode.

Figure 142. COBOL language example for SIOCGIFNAMEINDEX

SIOCGIPMSFILTER
Requests a list of the IPv4 source addresses that comprise the source filter
along with the current mode on a given interface and a multicast group for
a socket. The source filter can include or exclude the set of source
addresses, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE).

322 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

When the SIOCGIPMSFILTER IOCTL is issued, the REQARG parameter
must contain a IP_MSFILTER structure; this structure is defined in
SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for
PL/I, and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER
structure must include an interface address (input), a multicast address
(input), filter mode (output), the number of source addresses in the
following array (input and output), and an array of source addresses
(output). On input, the number of source addresses contains the number of
source addresses that fit in the input array. On output, the number of
source addresses contains the total number of source filters in the output
array. If the application does not know the size of the source list prior to
processing, it can make a reasonable guess (for example, 0). When the
process completes, if the number of source addresses contains a larger
value, the IOCTL can be repeated with a larger buffer. That is, on output,
the number of source addresses is always updated to be the total number
of sources in the filter; the array holds as many source addresses as fit, up
to the minimum of the array size passed in as the input number.

The size of the IP_MSFILTER value is calculated as follows:
1. Determine the number of source addresses that is expected.

2. Multiply the number of source addresses by the array element (size of
IMSF_SrcEntry) to get the size of all array elements.

3. Add the size of all array elements with the size of the IMSF_Header
structure to get the total number of bytes needed to accommodate the
source address information that is returned.

SIOCGMSFILTER
Requests a list of the IPv4 or IPv6 source addresses that comprise the
source filter, along with the current mode on a given interface index and a
multicast group for a socket. The source filter can include or exclude the
set of source address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE).

When the SIOCGMSFILTER IOCTL is issued, the REQARG parameter
must contain a GROUP_FILTER structure; this structure is defined in
SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for
PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER
structure must include an interface index (input), a socket address
structure of the multicast address (input), filter mode (output), the number
of source addresses in the following array (output), and an array of the
socket address structure of source addresses (input and output). On input,
the number of source addresses contains the number of source addresses
that fit in the input array. On output, the number of source addresses
contains the total number of source filters in the output array.

If the application does not know the size of the source list before
processing, it can make a reasonable guess (for example, 0). When the
process completes, if the number of source addresses holds a larger value,
the IOCTL can be repeated with a larger buffer. That is, on output, the
number of source addresses is always updated to be the total number of
sources in the filter, and the array holds as many source addresses as fit,
up to the minimum of the array size that is passed in as the input number.

The application calculates the size of the GROUP_FILTER value as follows:
1. Determine the number of source addresses expected.

2. Multiply the number of source addresses by the array element (size of
GF_SrcEntry) to get the size of all array elements.

Chapter 8. Sockets extended API 323

324

3. Add the size of all array elements to the size of the GF_Header
structure to get the total number of bytes needed to accommodate the
source addresses information returned.

SIOCGPARTNERINFO

Provides an interface for an application to retrieve security information
about its partner. When you issue the SIOCGPARTNERINFO IOCTL, the
REQARG parameter must contain a PartnerInfo structure. The PartnerInfo
structure is defined in members within SEZANMAC; EZBPINF1 defines
the PL/I layout, EZBPINFA defines the assembler layout, and EZBPINFB
defines the COBOL layout. For more information about using the

SIOCGPARTNERINFO|IOCTL, see|z/OS Communications Server: IP|

Programmer's Guide and Reference]

Restriction: The SIOCGPARTNERINFO IOCTL is not called by the IBM
listener.

Tip: If the partner end-point is the IBM Listener or a child server and
partner security credentials were requested, then only the CICS address
space information is returned on the SIOCGPARTNERINFO ioctl
invocation.

SIOCSAPPLDATA

Enables an application to associate 40 bytes of user-specified application
data with a socket endpoint. This application data can be used to identify
TCP connections in interfaces such as Netstat, SMF, or network
management applications.

Requirement: When you issue the SIOCSAPPLDATA IOCTL, ensure that
the REQARG parameter contains a SetApplData structure as defined by
the EZBYAPPL macro in the SEZANMAC dataset. See the CBLOCK and
the EZACOBOL samples for the equivalent SetApplData and
SetADcontainer structure definitions for PL/I and COBOL programming
environments. See |z/0OS Communications Server: IP Programmer's Guide|

land Reference| for more information about programming the

SIOCSAPPLDATA IOCTL.

SetAD_buffer
User-defined application data that comprises 40 bytes of data that
is used to identify the TCP connection with the IP CICS socket API
sockets application. The application data can be displayed in the
following ways:

* By requesting Netstat reports. The information is displayed
conditionally by using the modifier APPLDATA on the ALLC/-a
and COnn /-c reports, and unconditionally on the ALL/-A
report. See the Netstat ALL/-A report, the Netstat ALLConn/-a
report, and the Netstat COnn/-c report information in E / OS|
[Communications Server: IP System Administrator's Commands|
for more information about Netstat reports.

e In the SMF 119 TCP connection termination record. See Iﬁ’l
connection termination record (subtype 2)|in [z/09
Communications Server: IP Programmer's Guide and Reference]
for more information about the application data written on the
SMF 119 record.

¢ By network management applications. See INetwork managemend
interfaces|in [z/OS Communications Server: IP Programmer's|
Guide and Reference| for more information about application
data.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Applications using this ioctl need to consider the following guidelines:

* The application is responsible for documenting the content, format, and
meaning of the ApplData strings it associates with sockets that it owns.

* The application should uniquely identify itself with printable EBCDIC
characters at the beginning of the string. Strings beginning with
3-character IBM product identifiers, such as EZA or EZB, are reserved
for IBM use. IBM product identifiers begin with a letter in the range A -
L

* Printable EBCDIC characters should be use for the entire string to enable
searching with Netstat filters.

Tip: Separate application data elements with a blank for easier reading.

SIOCSIPMSFILTER
Sets a list of the IPv4 source addresses that comprise the source filter along
with the current mode on a given interface and a multicast group for a
socket. The source filter can either include or exclude the set of source
address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE). A maximum of 64 source addresses can be specified.
When the SIOCSIPMSFILTER IOCTL is issued, the REQARG parameter
must contain a IP_MSFILTER structure; this structure is defined in
SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for PL/I
and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER structure
must include an interface address, a multicast address, filter mode, the
number of source addresses in the following array, and an array of source
addresses.

The application program calculates the size of the IP_MSFILTER value as
follows:

1. Determine the number of source addresses expected.

2. Multiply the number of source addresses by the array element (size of
the IMSF_SrcEntry structure) to get the size of all array elements.

3. Add the size of all array elements to the size of IMSF_Header to get the
total number of bytes needed to accommodate the source addresses
information returned.

SIOCSMSFILTER
Sets a list of the IPv4 or IPv6 source addresses that comprise the source
filter, along with the current mode on a given interface index and a
multicast group for a socket. The source filter can include or exclude the
set of source address, depending on the filter mode (INCLUDE or
EXCLUDE). A maximum of 64 source addresses can be specified. When the
SIOCSMSFILTER IOCTL is issued, the REQARG parameter must contain a
GROUP_FILTER structure; this structure is defined in
SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for
PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER
must include an interface index, a socket address structure of the multicast
address, filter mode, the number of source addresses in the following array,
an array of the socket address structure of source addresses.

Calculate the size of the GROUP_FILTER value as follows:
1. Determine the number of source addresses expected.

2. Multiply the number of source addresses by the array element (size of
GF_SrcEntry) to get the size of all array elements.

Chapter 8. Sockets extended API 325

3. Add the size of all array elements to the size of GF_Header to get the
total number of bytes needed to accommodate the source addresses
information returned.

SIOCSPARTNERINFO
The SIOCSPARTNERINFO ioctl sets an indicator to retrieve the partner
security credentials during connection setup and saves the information,
enabling an application to issue a SIOCGPARTNERINFO ioctl without
suspending the application, or at least minimizing the time to retrieve the
information. The SIOCSPARTNERINFO IOCTL must be issued prior to the
SIOCGPARTNERINFO IOCTL. When you issue the SIOCSPARTNERINFO
IOCTL, the REQARG parameter must contain a constant value,
PI_REQTYPE_SET PARTNERDATA. This constant is defined in members
within SEZANMAC; EZBPINF1 defines the PL/I layout, EZBPINFA
defines the assembler layout, and EZBPINFB defines the COBOL layout.
For more information about using the [SIOCSPARTNERINFO|IOCTL, see
[z/OS Communications Server: IP Programmer's Guide and Reference]

Restriction: The SIOCSPARTNERINFO IOCTL is not called by the IBM
listener.

SIOCTTLSCTL
Controls Application Transparent Transport Layer Security (AT-TLS) for the
connection. REQARG and RETARG must contain a TTLS-IOCTL structure.
If a partner certificate is requested, the TTLS-IOCTL must include a pointer
to additional buffer space and the length of that buffer. Information is
returned in the TTLS-IOCTL structure. If a partner certificate is requested
and one is available, it is returned in the additional buffer space. The
TTLS-IOCTL structure is defined in the control block structures in
SEZANMAC. EZBZTLS] defines the PL/I layout, EZBZTLSP defines the
assembler layout, and EZBZTLSB defines the COBOL layout. For more
usage information and samples, see |z/0S Communications Server: IP|
[Programmer's Guide and Referencel

REQARG and RETARG
REQARG is used to pass and receive arguments to and from IOCTL, and
RETARG receives arguments from IOCTL. The REQARG and RETARG

parameters are described in [Table 22

Table 22. IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO X'8004A77E' 4 Set socket mode to one of the 0 Not used
following: X'00'=blocking;
X'01'=nonblocking

FIONREAD X'4004A77F' 0 Not used 4 Number of characters available
for read

SIOCATMARK X'4004A707' 0 Not used 4 X'00" = at OOB dataX'01' = not
at OOB data

SIOCGHOMEIF6 X'C014F608' 20 NetConfHdr See [Figure 141 on page 320}

326 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 22. IOCTL call arguments (continued)

COMMAND/CODE

SIZE REQARG

SIZE

RETARG

SIOCGIFADDR X'C020A70D'

32

First 16 bytes is the interface name.

Last 16 bytes—not used

32

Network interface address. For
assembler, see the
IOCN_SADDRIF field in
SYS1.MACLIB(BPXYIOCC). For
COBOL, see the IFR_ADDR
field in
SEZAINST(EZACOBOL). For
PL/I, see the IFR_ADDR field
in SEZAINST(CBLOCK).

SIOCGIFBRDADDR
X'C020A712'

32

First 16 bytes is the interface name.

Last 16 bytes—not used

32

Network interface address. For
assembler, see the
IOCN_SADDRIFBROADCAST
field in
SYS1.MACLIB(BPXYIOCC). For
COBOL, see the
IFR-BROADADDR field in
SEZAINST(EZACOBOL). For
PL/I, see the
IFR-BROADADDR field in
SEZAINST(CBLOCK).

SIOCGIFCONF X'C008A714'

Size of RETARG

When you call the IOCTL with
the SIOCGIFCONF command
set, the REQARG parameter
should contain the length in
bytes of RETARG. Each
interface is assigned a 32-byte
array element; the REQARG
parameter should be set to the
number of interfaces multiplied
by 32. TCP/IP for z/OS can
return up to 100 array
elements.

SIOCGIFDSTADDR
X'C020A70F'

32

First 16 bytes is the interface name.

Last 16 bytes are not used.

32

Destination interface address.
For assembler, see the
IOCN_SADDRIFDEST field in
SYS1.MACLIB(BPXYIOCC). For
COBOL, see the IFR-DSTADDR
field in
SEZAINST(EZACOBOL). For
PL/I, see the IFR_DSTADDR
field in SEZAINST(CBLOCK).

SIOCGIFMTU X'C020A726'

32

First 16 bytes is the interface name.

Last 16 bytes are not used.

32

IPv4 interface MTU (maximum
transmission unit). For
assembler, see the
IOCN_MTUSIZE field in
SYS1.MACLIB(BPXYIOCC). For
COBOL, see the IFR_MTU field
in SEZAINST(EZACOBOL).
For PL/I, see the IFR_MTU
field in SEZAINST(CBLOCK).

SIOCGIFNAMEINDEX
X'4000F603'

First 4 bytes of return the buffer

See [Figure 142 on page 322}

Chapter 8. Sockets extended API 327

Table 22. IOCTL call arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG
- See the IP_MSFILTER structure in 0 Not used.
SIOCGIPMSFILTER macro BPXYIOCC. See note 1.
X'C000A724"
- See the GROUP_FILTER structure in 0 Not used.
SIOCGMSFILTER macro BPXYIOCC. See note 2.
X'C000F610'
- For the PartnerInfo structure layout, Not used.
SIOCGPARTNERINFO see SEZANMAC(EZBPINFA) for
, i assembler, SEZANMAC(EZBPINF1)
X'C000F612 for PL/I, and
SEZANMAC(EZBPINFB) for COBOL.
See note 3.
- See the SETAPPLDATA structure in 0 Not used.
SIOCSAPPLDATA macro EZBYAPPL
X'8018D90C'
- See the IP_MSFILTER structure in 0 Not used.
SIOCSIPMSFILTER macro BPXYIOCC. See note 1.
X'8000A725'
- See the GROUP_FILTER structure in
SIOCSMSFILTER macro BPXYIOCC. See note 2.
X'8000F611'
4 See Not used.
SIOCSPARTNERINFO PI_REQTYPE_SET_PARTNERDATA
' y in SEZANMAC(EZBPINFA) for
X'8004F613 assembler, SEZANMAC(EZBPINF1)
for PL/I, and
SEZANMAC(EZBPINFB) for COBOL.
SIOCTTLSCTLX'C038D90B' 56 For the IOCTL structure layout, see 56 For the IOCTL structure layout,
SEZANMAC(EZBZTLS1) for PL/I, see SEZANMAC(EZBZTLS1)
SEZANMAC(EZBZTLSP) for for PL/I,
assembler, and SEZANMAC(EZBZTLSP) for
SEZANMAC(EZBZTLSB) for COBOL assembler, and
SEZANMAC(EZBZTLSB) for
COBOL.
Note:
* The size of IP_MSFILTER structure must be equal to or greater than the size of the IMSF_Header stucture.
* The size of GROUP_FILTER structure must be equal to or greater than the size of the GF_Header structure.
* The size of the PartnerInfo structure must be equal to or greater than the PI_FIXED_SIZE value.

328 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Parameter values returned to the application for the IOCTL call
RETARG

Returns an array whose size is based on the value in COMMAND. See
[Table 22 on page 326| for information about REQARG and RETARG.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See [Appendix B, “Return codes,” on page 449| for

information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code
The COMMAND SIOGIFCONF returns a variable number of network interface

configurations. contains an example of a COBOL II routine that can be
used to work with such a structure.

Note: This call can be programmed only in languages that support address
pointers. shows a COBOL II example for SIOCGIFCONF.

WORKING-STORAGE SECTION.

PIC 9(8) COMP.
PIC 9(8) COMP VALUE max number of interfaces.

05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.

77 REQARG
77 COUNT
LINKAGE SECTION.

01 RETARG.
10
10
10
10
10

NAME PIC X(16).
FAMILY PIC 9(4) BINARY.
PORT PIC 9(4) BINARY.
ADDR PIC 9(8) BINARY.
NULLS PIC X(8).
PROCEDURE DIVISION.

MULTIPLY COUNT BY 32 GIVING REQARQ.
CALL '"EZASOKET' USING SOC-FUNCTION S COMMAND
REQARG RETARG ERRNO RETCODE.

Figure 143. COBOL Il example for SIOCGIFCONF

LISTEN call

The LISTEN call:
e Completes the bind, if BIND has not already been called for the socket.

* Creates a connection-request queue of a specified length for incoming connection
requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from
clients. When a connection request is received, a new socket is created by a
subsequent ACCEPT call, and the original socket continues to listen for additional
connection requests. The LISTEN call converts an active socket to a passive socket
and conditions it to accept connection requests from clients. After a socket becomes
passive, it cannot initiate connection requests.

Note: The BACKLOG value specified on the LISTEN command cannot be greater
than the value configured by the SOMAXCONN statement in the stack's TCPIP
PROFILE (default=10); no error is returned if a larger backlog is requested. If you
want a larger backlog, update the SOMAXCONN statement. See the
[Communications Server: IP Configuration Reference| for details.

The following requirements apply to this call:

Chapter 8. Sockets extended API 329

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of LISTEN call instructions.

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'LISTEN'.

S
BACKLOG
ERRNO
RETCODE

PIC 9(4) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL '"EZASOKET' USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 144. LISTEN call instruction example

330

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

Parameter values set by the application for the LISTEN call

SOC-FUNCTION
A 16-byte character field containing LISTEN. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to
be queued.

Parameter values returned to the application for the LISTEN call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

NTOP call

NTOP converts an IP address from its numeric binary form into a standard text
presentation form. On successful completion, NTOP returns the converted IP
address in the buffer provided.

The following requirements apply to this call:

Requirement

Description

Authorization:

Supervisor state or problem state, any PSW key

Dispatchable unit mode:

Task

Cross memory mode:

PASN = HASN

Amode:

31-bit or 24-bit

ASC mode:

Primary address space control (ASC) mode

Interrupt status:

Enabled for interrupts

Locks:

Unlocked

Control parameters:

All parameters must be addressable by the caller and in the
primary address space

shows an example of NTOP call instructions.

WORKING-STORAGE SECTION.
01 SOC-NTOP-FUNCTION

01 S

* IPv4 socket structure.

01 NAME.
03 FAMILY
03 PORT

PIC
PIC

03 IP-ADDRESS PIC
03 RESERVED PIC

* IPv6 socket structure.

01 NAME.
03 FAMILY
03 PORT

PIC
PIC

03 FLOWINFO PIC
03 IP-ADDRESS.
10 FILLER PIC
10 FILLER PIC
03 SCOPE-ID PIC
01 NTOP-FAMILY PIC 9(8) BINARY.

01 ERRNO
01 RETCODE

PIC 9(8) BINARY.
PIC S9(8) BINARY.

01 PRESENTABLE-ADDRESS
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

PROCEDURE DIVISION.

9(4)
9(4)
9(8)

X(8).

9(4)
9(4)
9(8)

9(16) BINARY.
9(16) BINARY.
9(8) BINARY.

PIC X(16)

VALUE IS 'NTOP'.

PIC 9(4) BINARY.

BINARY.
BINARY.
BINARY.

BINARY.
BINARY.
BINARY.

PIC X(45).

CALL '"EZASOKET' USING SOC-NTOP-FUNCTION NTOP-FAMILY
IP-ADDRESS

PRESENTABLE-ADDRESS

PRESENTABLE-ADDRESS-LEN

ERRNO RETURN-CODE.

Figure 145. NTOP call instruction example

Chapter 8. Sockets extended API 331

332

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the NTOP call

SOC-FUNCTION
A 16-byte character field containing 'NTOP'". The field is left-justified and
padded on the right with blanks.

FAMILY
The addressing family for the IP address being converted. The value of
decimal 2 must be specified for AF_INET and 19 for AF_INET®6.

IP-ADDRESS
A field containing the numeric binary form of the IPv4 or IPv6 address
being converted. For an IPv4 address this field must be a fullword and for
an IPv6 address this field must be 16 bytes. The address must be in
network byte order.

Parameter values returned to the application for the NTOP call

PRESENTABLE-ADDRESS
A field used to receive the standard text presentation form of the IPv4 or
IPv6 address being converted. For IPv4, the address is in dotted-decimal
format and for IPv6 the address is in colon-hexadecimal format. The size of
the IPv4 address is a maximum of 15 bytes and the size of the converted
IPv6 address is a maximum of 45 bytes. Consult the value returned in
PRESENTABLE-ADDRESS-LEN for the actual length of the value in
PRESENTABLE-ADDRESS.

PRESENTABLE-ADDRESS-LEN
Initially, an input parameter. The address of a halfword binary field (that is
used to specify the length of DSTADDR field on input and on a successful
return) contains the length of converted IP address.

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains an error
number. See |[Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

PTON call

PTON converts an IP address in its standard text presentation form to its numeric
binary form. On successful completion, PTON returns the converted IP address in
the buffer provided.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Requirement Description

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 146 on page 334 shows an example of PTON call instructions.

Chapter 8. Sockets extended API 333

WORKING-STORAGE SECTION.

01 SOC-NTOP-FUNCTION PIC X(16) VALUE IS 'PTON'.
01 S PIC 9(4) BINARY.
* IPv4 socket structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 TIP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 AF-INET PIC 9(8) BINARY VALUE 2.
01 AF-INET6 PIC 9(8) BINARY VALUE 19.

* IPv4 address.
01 PRESENTABLE-ADDRESS PIC X(45).
01 PRESENTABLE-ADDRESS-IPV4 REDEFINES PRESENTABLE-ADDRESS.
05 PRESENTABLE-IPV4-ADDRESS PIC X(15)
VALUE '192.26.5.19'.
05 FILLER PIC X(30).
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 11.

* [Pv6 address.
01 PRESENTABLE-ADDRESS PIC X(45)
VALUE '12f9:0:0:¢c30:123:457:9cb:1112".
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 29.

* IPv4-mapped IPv6 address.
01 PRESENTABLE-ADDRESS PIC X(45)
VALUE '12f9:0:0:c30:123:457:192.26.5.19".
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 32.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
01 PRESENTABLE-ADDRESS PIC X(45).

01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.
PROCEDURE DIVISION.

* IPv4 address.
CALL "EZASOKET' USING SOC-PTON-FUNCTION AF-INET
PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN
IP-ADDRESS
ERRNO RETURN-CODE.
* [Pv6 address.
CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET6
PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN
IP-ADDRESS
ERRNO RETURN-CODE.

Figure 146. PTON call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249 |

334 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Parameter values set by the application for the PTON call

SOC-FUNCTION
A 16-byte character field containing PTON'. The field is left-justified and
padded on the right with blanks.

FAMILY
The addressing family for the IP address being converted. The value of
decimal 2 must be specified for AF_INET and 19 for AF_INETS6.

PRESENTABLE-ADDRESS
A field containing the standard text presentation form of the IPv4 or IPv6
address being converted. For IPv4, the address is in dotted-decimal format
and for IPv6 the address is in colon-hexadecimal format.

PRESENTABLE-ADDRESS-LEN
An input parameter. The address of a halfword binary field that must
contain the length of IP address to be converted.

Parameter values returned to the application for the PTON call

IP-ADDRESS
A field containing the numeric binary form of the IPv4 or IPv6 address
being converted. For an IPv4 address this field must be a fullword and for
an IPv6 address this field must be 16 bytes. The address in network byte
order.

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains an error
number. See |[Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call

-1 Check ERRNO for an error code

READ call

The READ call reads the data on sockets. This is the conventional TCP/IP read
data operation. If a datagram packet is too long to fit in the supplied buffer,
datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes up to the entire 1000 bytes. The number of bytes returned is
contained in RETCODE. Therefore, programs using stream sockets should place
this call in a loop that repeats until all data has been received.

Note: See ["EZACIC05 program” on page 398| for a subroutine that translates ASCII
input data to EBCDIC.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key

Chapter 8. Sockets extended API 335

Requirement Description

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]
[requirements for the Callable Socket API” on page 245 |

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of READ call instructions.

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'READ'.

S

NBYTE
BUF
ERRNO
RETCODE

PIC 9(4) BINARY.
PIC 9(8) BINARY.
PIC X(Tength of buffer).
PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

Figure 147. READ call instruction example

336

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249]

Parameter values set by the application for the READ call

SOC-FUNCTION
A 16-byte character field containing READ. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

NBYTE
A fullword binary number set to the size of BUE. READ does not return
more than the number of bytes of data in NBYTE even if more data is
available.

Parameter values returned to the application for the READ call

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.
-1 Check ERRNO for an error code.
READV call

The READV function reads data on a socket and stores it in a set of buffers. If a
datagram packet is too long to fit in the supplied buffers, datagram sockets discard
extra bytes.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 148 on page 338 shows an example of READV call instructions.

Chapter 8. Sockets extended API 337

WORKING-STORAGE SECTION.

01 SOKET-FUNCTION PIC X(16) VALUE 'READV'.
01 S PIC 9(4) BINARY.

01 TOVCNT PIC 9(8) BINARY.

01 I0V.

03 BUFFER-ENTRY OCCURS N TIMES.
05 BUFFER-POINTER USAGE IS POINTER.
05 RESERVED PIC X(4).
05 BUFFER-LENGTH PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

SET BUFFER-POINTER(1) TO ADDRESS OF BUFFERL.
SET BUFFER-LENGTH(1) TO LENGTH OF BUFFERL.
SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.

SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

CALL '"EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 148. READV call instruction example

Parameter values set by the application for the READV call

S A value or the address of a halfword binary number specifying the
descriptor of the socket into which the data is to be read.

IOV An array of tripleword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:

Fullword 1
Pointer to the address of a data buffer, which is filled in on
completion of the call.

Fullword 2
Reserved.

Fullword 3
The length of the data buffer referenced in fullword one.

IOVCNT
A fullword binary field specifying the number of data buffers provided for
this call.

Parameter values returned to the application for the READV call

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See |Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

338 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

>0 A positive value indicates the number of bytes copied into the
buffer.

-1 Check ERRNO for an error code.

RECV call

The RECV call, like READ, receives data on a socket with descriptor S. RECV
applies only to connected sockets. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For additional control of the incoming data, RECV can:
* Peek at the incoming message without having it removed from the buffer.
* Read out-of-band data.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes up to the entire 1000 bytes. The number of bytes returned are
contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV
blocks the caller until data arrives. If data is not available and the socket is in
nonblocking mode, RECV returns a -1 and sets ERRNO to 35 (EWOULDBLOCK).
See ["FCNTL call” on page 263| or ['IOCTL call” on page 317 for a description of
how to set nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See ["EZACICO05 program” on page 398| for a subroutine that translates ASCII
input data to EBCDIC.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 149 on page 340| shows an example of RECV call instructions.

Chapter 8. Sockets extended API 339

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'RECV'.

01
01
01
01

S

FLAGS
NO-FLAG
00B
PEEK
NBYTE
BUF
ERRNO
RETCODE

PIC 9(4) BINARY.

PIC 9(8) BINARY.

PIC 9(8) BINARY VALUE IS 0
PIC 9(8) BINARY VALUE IS 1.
PIC 9(8) BINARY VALUE IS 2
PIC 9(8) BINARY.

PIC X(length of buffer).

PIC 9(8) BINARY.

PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE BUF

ERRNO RETCODE.

Figure 149. RECYV call instruction example

340

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249 |

Parameter values set by the application for the RECV call

SOC-FUNCTION
A 16-byte character field containing RECV. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field that should be 4 bytes in length.

Literal value Binary value Description

NO-FLAG x'00000000' Read data.

MSG-OOB x'00000001" Receive out-of-band data (stream sockets

only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

MSG-PEEK x'00000002' Peek at the data, but do not destroy data. If
the peek flag is set, the next receive
operation reads the same data.

MSG-WAITALL x'00000040' Requests that the function block until the
full amount of data requested can be
returned (stream sockets only). The function
might return a smaller amount of data if the
connection is terminated, an error is
pending, or if the SO_RCVTIMEO value is
set and the timer expired for the socket.

NBYTE
A value or the address of a fullword binary number set to the size of BUF.
RECV does not receive more than the number of bytes of data in NBYTE
even if more data is available.

Parameter values returned to the application for the RECV call
BUF The input buffer to receive the data.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |[Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 The socket is closed
>0 A positive return code indicates the number of bytes copied into
the buffer.

-1 Check ERRNO for an error code

RECVFROM call

The RECVFROM call receives data on a socket with descriptor S and stores it in a
buffer. The RECVFROM call applies to both connected and unconnected sockets.
The IPv4 or IPv6 socket address is returned in the NAME structure. If a datagram
packet is too long to fit in the supplied buffers, datagram sockets discard extra
bytes.

For datagram protocols, the RECVFROM call returns the source address associated
with each incoming datagram. For connection-oriented protocols like TCP, the
GETPEERNAME call returns the address associated with the other end of the
connection.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned are
contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode,
RECVFROM blocks the caller until data arrives. If data is not available and the
socket is in nonblocking mode, RECVFROM returns a -1 and sets ERRNO to 35
(EWOULDBLOCK). See ["FCNTL call” on page 263| or ['IOCTL call” on page 317
for a description of how to set nonblocking mode.

Note: See ["EZACIC05 program” on page 398/ for a subroutine that translates ASCII
input data to EBCDIC.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Chapter 8. Sockets extended API 341

Figure 150. RECVFROM call instruction example

342

Requirement

Description

ASC mode:

Primary address space control (ASC) mode

Interrupt status:

Enabled for interrupts

Locks:

Unlocked

Control parameters:

All parameters must be addressable by the caller and in the
primary address space

shows an example of RECVFROM call instructions.

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'RECVFROM'.

01
01
01

* *

01

IPv6

* %

01

01
01

S PIC 9(4) BINARY.

FLAGS PIC 9(8) BINARY.

NO-FLAG PIC 9(8) BINARY VALUE IS 0.
00B PIC 9(8) BINARY VALUE IS 1.
PEEK PIC 9(8) BINARY VALUE IS 2.
NBYTE PIC 9(8) BINARY.

BUF PIC X(Tength of buffer).

IPv4 Socket Address Structure.

NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

Socket Address Structure.

NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOW-INFO PIC 9(8) BINARY.
03 IP-ADDRESS.

05 FILLER PIC 9(16) BINARY.
05 FILLER PIC 9(16) BINARY.

03 SCOPE-ID PIC 9(8) BINARY.

ERRNO PIC 9(8) BINARY.

RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S FLAGS
NBYTE BUF NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the RECVFROM call

SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left-aligned
and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS

A fullword binary field that should be 4 bytes in length.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Literal value Binary value Description

NO-FLAG x'00000000' Read data.

MSG-OOB x'00000001" Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

MSG-PEEK x'00000002' Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVFROM
call reads the same data.

MSG-WAITALL x'00000040' Requests that the function block until the

NBYTE

full amount of data requested can be
returned (stream sockets only). The function
might return a smaller amount of data if the
connection is terminated, an error is
pending, or the SO_RCVTIMEO value is set
and the timer expired for the socket.

A fullword binary number specifying the length of the input buffer.

Parameter values returned to the application for the RECVFROM

call

BUF Defines an input buffer to receive the input data.

NAME

An IPv4 socket structure containing the address of the socket that sent the
data. The structure is:

FAMILY
A halfword binary number specifying the addressing family. The
value is a decimal 2, indicating AF_INET.

PORT A halfword binary number specifying the port number of the
sending socket.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet
address of the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

An IPv6 socket structure containing the address of the socket that sent the
data. The structure is:

FAMILY
A halfword binary number specifying the addressing family. The
value is a decimal 19, indicating AF_INET6.

PORT A halfword binary number specifying the port number of the
sending socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
The value of this field is undefined.

IP-ADDRESS
A 16-byte binary number specifying the 128-bit IPv6 Internet
address of the sending socket.

Chapter 8. Sockets extended API 343

SCOPE-ID
A fullword binary field that identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID
contains the link index for the IP~-ADDRESS. For all other address
scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 The socket is closed.

>0 A positive return code indicates the number of bytes of data
transferred by the read call.

-1 Check ERRNO for an error code.

RECVMSG call

The RECVMSG call receives messages on a socket with descriptor S and stores
them in an array of message headers. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, the RECVMSG call returns the source address associated
with each incoming datagram. For connection-oriented protocols like TCP, the
GETPEERNAME call returns the address associated with the other end of the
connection.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 151 on page 345 shows an example of RECVMSG call instructions.

344 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.

01
01
01

LINKAGE

01

* %

* %k ok

SOC-FUNCTION

03 NAME

03 NAME-LEN
03 IOV

03 IOVCNT

03 ACCRIGHTS
03 ACCRLEN

FLAGS
NO-FLAG
00B
PEEK
ERRNO
RETCODE

SECTION.

L1.

PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

03 RECVMSG-IOVECTOR.

05 IOV1A
05 IOVIAL
05 IOVIL
05 IOVZ2A
05 I0V2AL
05 I0VZ2L
05 IOV3A
05 IOV3AL
05 IOV3L

03 RECVMSG-BUFFER1
03 RECVMSG-BUFFER2
03 RECVMSG-BUFFER3

03 RECVMSG-BUFNO

03 RECVMSG-NAME.

05 FAMILY
05 PORT

05 IP-ADDRESS

05 RESERVED

03 RECVMSG-NAME.

05 FAMILY
05 PORT
05 FLOW-INFO

05 IP-ADDRESS.

10 FILLER
10 FILLER
05 SCOPE-ID

X(16)
9(4)

USAGE
USAGE
USAGE
USAGE
USAGE
USAGE

9(8)
9(8)
9(8)
9(8)
9(8)
S9(8)

PIC
PIC
PIC
PIC

IPv4 Socket Address Structure.

PIC
PIC
PIC
PIC

IPv6 Socket Address Structure.

PIC
PIC
PIC

PIC
PIC
PIC

VALUE IS 'RECVMSG'.

BINARY.

IS POINTER.
IS POINTER.
IS POINTER.
IS POINTER.
IS POINTER.
IS POINTER.

BINARY.
BINARY VALUE I

S0
BINARY VALUE IS 1.
S2

BINARY VALUE I
BINARY.
BINARY.

USAGE IS POINTER.
PIC 9(8) COMP.
PIC 9(8) COMP.
USAGE IS POINTER.
PIC 9(8) COMP.
PIC 9(8) COMP.
USAGE IS POINTER.
PIC 9(8) COMP.
PIC 9(8) COMP.

X(16).
X(16).
X(16).
9(8) COMP.

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.
X(8).

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.

9(16) BINARY.
9(16) BINARY.
9(8) BINARY.

Figure 151. RECVMSG call instruction example (Part 1 of 2)

Chapter 8. Sockets extended API

345

PROCEDURE DIVISION USING L1.

SET NAME TO ADDRESS OF RECVMSG-NAME.
MOVE LENGTH OF RECVMSG-NAME TO NAME-LEN.
SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.
MOVE 3 TO RECVMSG-BUFNO.

SET IOVCNT TO ADDRESS OF RECVMSG-BUFNO.
SET IOV1A TO ADDRESS OF RECVMSG-BUFFERI.
MOVE 0 TO MSG-IOVI1AL.

MOVE LENGTH OF RECVMSG-BUFFER1 TO IOVIL.
SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.
MOVE 0 TO IOV2AL.

MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.
SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.
MOVE 0 TO IOV3AL.

MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.
SET ACCRIGHTS TO NULLS.

SET ACCRLEN TO NULLS.

MOVE 0 TO FLAGS.

MOVE SPACES TO RECVMSG-BUFFERL.

MOVE SPACES TO RECVMSG-BUFFERZ2.

MOVE SPACES TO RECVMSG-BUFFER3.

CALL '"EZASOKET' USING SOC-FUNCTION S MSG FLAGS ERRNO RETCODE.

Figure 152. RECVMSG call instruction example (Part 2 of 2)

346

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application for the RECVMSG call

S A value or the address of a halfword binary number specifying the socket
descriptor.

MSG On input, a pointer to a message header into which the message is
received upon completion of the call.

Field Description

NAME
On input, a pointer to a buffer where the sender address is stored
upon completion of the call. The storage being pointed to should
be for an IPv4 socket address or an IPv6 socket address.

The IPv4 socket address structure contains the following fields:
Field Description

FAMILY
Output parameter. A halfword binary number specifying
the IPv4 addressing family. The value for IPv4 socket
descriptor (for example, S parameter) is a decimal 2,
indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying
the port number of the sending socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying
the 32-bit IPv4 Internet address of the sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is
required, but is not used.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

The IPv6 socket address structure contains the following fields:
Field Description

FAMILY
Output parameter. A halfword binary field specifying the
IPv6 addressing family. The value for IPv6 socket
descriptor (for example, S parameter) is a decimal 19,
indicating AF_INET®6.

PORT
Output parameter. A halfword binary number specifying
the port number of the sending socket.

FLOW-INFO
Output parameter. A fullword binary field specifying the
traffic class and flow label. The value of this field is
undefined.

IP-ADDRESS
Output parameter. A two doubleword, 16-byte binary field
specifying the 128-bit IPv6 Internet address, in network
byte order, of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces
as appropriate for the scope of the address carried in the
IP-ADDRESS field. For a link scope IP-ADDRESS,
SCOPE-ID contains the link index for the IP~ADDRESS. For
all other address scopes, SCOPE-ID is undefined.

NAME-LEN

10V

On input, a pointer to the size of the NAME buffer that is filled in
on completion of the call.

On input, a pointer to an array of tripleword structures with the
number of structures equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1
A pointer to the address of a data buffer. The data buffer
must be in the home address space.

Fullword 2
Reserved. This storage is cleared.

Fullword 3
A pointer to the length of the data buffer referenced in
fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage portion, as shown in the example.

IOVCNT

On input, a pointer to a fullword binary field specifying the
number of data buffers provided for this call.

ACCRIGHTS

On input, a pointer to the access rights received. This field is
ignored.

Chapter 8. Sockets extended API 347

348

ACCRLEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword binary field that should be 4 bytes in length.
Literal value Binary value Description
NO-FLAG x'00000000 Read data.
MSG-OOB x'00000001" Receive out-of-band data (stream sockets

only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

MSG-PEEK x'00000004' Peek at the data, but do not destroy data. If
the peek flag is set, the next receive
operation reads the same data.

MSG-WAITALL x'00000040' Requests that the function block until the
full amount of data requested can be
returned (stream sockets only). The function
might return a smaller amount of data if the
connection is terminated, an error is
pending, or the SO_RCVTIMEO value is set
and the timer expired for the socket.

Parameter values returned by the application for the RECVMSG
call

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See |[Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field with the following values:

Value Description
<0 Call returned error. See ERRNO field.
0 Connection partner has closed connection.

>0 Number of bytes read.

SELECT call

In a process where multiple I/O operations can occur, it is necessary for the
program to be able to wait on one or several of the operations to complete. For
example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became
available. The SELECT call allows you to test several sockets and to execute a
subsequent I/0O call only when one of the tested sockets is ready, thereby ensuring
that the I/O call does not block.

To use the SELECT call as a timer in your program, do one of the following;:
* Set the read, write, and exception arrays to zeros.
* Specify MAXSOC <= 0.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Defining which sockets to test for the SELECT call

The SELECT call monitors for read operations, write operations, and exception
operations:

* When a socket is ready to read, one of the following has occurred:

— A buffer for the specified sockets contains input data. If input data is
available for a given socket, a read operation on that socket does not block.

— A connection has been requested on that socket.

* When a socket is ready to write, TCP/IP stacks can accommodate additional
output data. If TCP/IP stacks can accept additional output for a given socket, a
write operation on that socket does not block.

* When an exception condition has occurred on a specified socket it is an
indication that a TAKESOCKET has occurred for that socket.

* A timeout occurs on the SELECT call. The timeout period can be specified when
the SELECT call is issued.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit of the
first fullword represents socket descriptor 0 and the leftmost bit of the first
fullword represents socket descriptor 31. If your process uses 32 or fewer sockets,
the bit string is one fullword. If your process uses 33 sockets, the bit string is two
fullwords. The rightmost bit of the second fullword represents socket descriptor 32,
and the leftmost bit of the second fullword represents socket descriptor 63. This
pattern repeats itself for each subsequent fullword. That is, the leftmost bit of
fullword n represents socket 32n-1 and the rightmost bit represents socket 32(n-1).

You define the sockets that you want to test by turning on bits in the string.
Although the bits in the fullwords are numbered from right to left, the fullwords
are numbered from left to right with the leftmost fullword representing socket
descriptor 0-31. For example:

First fullword Second fullword Third fullword
socket descriptor 31...0 socket descriptor 63...32 socket descriptor 95...64

Note: To simplify string processing in COBOL, you can use the program
EZACIC06 to convert each bit in the string to a character. For more information,
see ["EZACIC06 program” on page 400

Chapter 8. Sockets extended API 349

350

Calls included for read operations

Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it,
or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECT call. When the SELECT call
returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write operations
A socket is selected for writing (ready to be written) when:

* TCP/IP stacks can accept additional outgoing data.

* The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket is selected for write when the CONNECT
completes.

A call to SEND, SENDTO, WRITE, or WRITEV blocks when the amount of data to
be sent exceeds the amount of data TCP/IP stacks can accept. To avoid this, you
can precede the write operation with a SELECT call to ensure that the socket is
ready for writing. After a socket is selected for WRITE, the program can determine
the amount of TCP/IP stacks buffer space available by issuing the GETSOCKOPT
call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to one before issuing the SELECT call. When the
SELECT call returns, the corresponding bits in the WRETMSK indicate sockets
ready for writing.

Exception operations for the SELECT call
For each socket to be tested, the SELECT call can check for an existing exception
condition. Two exception conditions are supported:

* The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call. When
this condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

e A socket has received out-of-band data. On this condition, a READ returns the
out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to one. When the SELECT call returns,
the corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC parameter for the SELECT call

The SELECT call must test each bit in each string before the call returns any
results. For efficiency, the MAXSOC parameter can be used to specify the largest
socket descriptor number that needs to be tested for any event type. The SELECT
call tests only bits in the range 0 up to the MAXSOC value minus 1. For example,
if the MAXSOC parameter is set to 50, the range is 0 - 49.

TIMEOUT parameter for the SELECT call
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECT call returns and RETCODE is set to 0.

[Figure 153 on page 351| shows an example of SELECT call instructions.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.

01 MAXSOC

01 TIMEOUT.

PIC 9(8) BINARY.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

01 RSNDMSK
01 WSNDMSK
01 ESNDMSK
01 RRETMSK
01 WRETMSK
01 ERETMSK
01 ERRNO

01 RETCODE

PIC X(*).
PIC X(*).
PIC X(*).
PIC X(*).
PIC X(*).

PIC X(*).

PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))=4

Figure 153. SELECT call instruction example

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into
one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit
masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application for the SELECT call

SOC-FUNCTION
A 16-byte character field containing SELECT. The field is left-aligned and
padded on the right with blanks.

MAXSOC
A fullword binary field that specifies the largest socket descriptor number
being checked. The SELECT call tests only bits in the range 0 through the
MAXSOC value minus 1. For example, if the MAXSOC value is set to 50,
the bits that are tested are in the range 0 - 49.

Guideline: For the INITAPI call, the MAXSOC field is a halfword binary
field. Therefore, do not reuse this field for the SELECT and INITAPI calls.

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait
for the selection to complete. If TIMEOUT-SECONDS is a negative value,
the SELECT call blocks until a socket becomes ready or an ECB in a list is
posted. To poll the sockets and return immediately, specify the TIMEOUT
value to be 0.

TIMEOUT is specified in the two-word TIMEOUT as follows:

 TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

 TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

Chapter 8. Sockets extended API 351

352

For example, if you want SELECT to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.

* For each socket to be checked for pending read events, the
corresponding bit in the string should be set to 1.

* For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT does not check for read
events.

WSNDMSK
A bit string sent to request write event status.

 For each socket to be checked for pending write events, the
corresponding bit in the string should be set to set.

* For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT does not check for write
events.

ESNDMSK
A bit string sent to request exception event status.

* For each socket to be checked for pending exception events, the
corresponding bit in the string should be set to set.

* For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT does not check for
exception events.

Parameter values returned to the application for the SELECT call

RRETMSK
A bit string returned with the status of read events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that is ready to read, the corresponding bit in the string is
set to 1; bits that represent sockets that are not ready to read are set to 0.

WRETMSK
A bit string returned with the status of write events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that is ready to write, the corresponding bit in the string is
set to 1; bits that represent sockets that are not ready to be written are set
to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that has an exception status, the corresponding bit is set to
1; bits that represent sockets that do not have exception status are set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |[Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Value Description

>0 Indicates the sum of all ready sockets in the three masks
0 Indicates that the SELECT time limit has expired

-1 Check ERRNO for an error code

SELECTEX call

The SELECTEX call monitors a set of sockets, a time value and an ECB or list of
ECBs. It completes when either one of the sockets has activity, the time value
expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:
* Set the read, write, and exception arrays to zeros
* Specify MAXSOC =0

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 154 on page 355|shows an example of SELECTEX call instructions.

Chapter 8. Sockets extended API 353

354 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

If an application intends to pass a single ECB on the SELECTEX call, then the corresponding working storage

definitions and CALL instruction should be coded as follows:

WORKING-STORAGE SECTION.

SOC-FUNCTION PIC
MAXSOC PIC
TIMEOUT.

03 TIMEOUT-SECONDS
03 TIMEOUT-MINUTES

RSNDMSK PIC
WSNDMSK PIC
ESNDMSK PIC
RRETMSK PIC
WRETMSK PIC
ERETMSK PIC
SELECB PIC
ERRNO PIC
RETCODE PIC

X(16) VALUE IS 'SELECTEX'.
9(8) BINARY.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
X(*).
X(*).
X(*).
X(*).
X(*).
X(*).
X(4).
9(8) BINARY.
S9(8) BINARY.

Where * is the size of the select mask

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK
RRETMSK
SELECB E

WSNDMSK ESNDMSK
WRETMSK ERETMSK
RRNO RETCODE.

Where * is the size of the select mask.

PROCEDURE DIVISION.
CALL '"EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK

RRETMSK WRETMSK ERETMSK

However, if the application intends to pass the address of an ECB list on the SELECTEX call, then the application

SELECB E

RRNO RETCODE.

must set the high-order bit in the ECB list address and pass that address using the BY VALUE option as in the

following example. The remaining parameters must be reset to the default value by specifying BY REFERENCE

before the ERRNO value:

WORKING-

01
01
01

01
01
01
01
01

STORAGE SECTION.
SOC-FUNCTION PIC
MAXSOC PIC
TIMEOUT.

03 TIMEOUT-SECONDS
03 TIMEOUT-MINUTES

RSNDMSK PIC
WSNDMSK PIC
ESNDMSK PIC
RRETMSK PIC
WRETMSK PIC
ERETMSK PIC
ECBLIST-PTR USA
ERRNO PIC
RETCODE PIC

X(16) VALUE IS 'SELECTEX'.

9(8) BINARY.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
X(*).
X(*).
X(*).
X(*).
X(*).
X(*).
GE IS POINTER.
9(8) BINARY.
S9(8) BINARY.

An asterisk (*) represents the size of the select mask.

PROCEDURE DIVISION.
CALL '"EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK

RRETMSK WRETMSK ERETMSK

BY VALUE
BY REFER

ECBLIST-PTR
ENCE ERRNO RETCODE.

Figure 154. SELECTEX call instruction example

Chapter 8. Sockets extended API

355

356

Defining which sockets to test for the SELECTEX call

The SELECTEX call monitors for read operations, write operations, and exception
operations:

* When a socket is ready to read, one of the following has occurred:

— A buffer for the specified sockets contains input data. If input data is
available for a given socket, a read operation on that socket does not block.

— A connection has been requested on that socket.

* When a socket is ready to write, TCP/IP stacks can accommodate additional
output data. If TCP/IP stacks can accept additional output for a given socket, a
write operation on that socket does not block.

* When an exception condition has occurred on a specified socket it is an
indication that a TAKESOCKET has occurred for that socket.

* A timeout occurs on the SELECTEX call. The timeout period can be specified
when the SELECTEX call is issued.

* The ECB (or one of the ECBs in the ECB list) passed on the SELECTEX call has
been posted.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit of the
first fullword represents socket descriptor 0 and the leftmost bit of the first
fullword represents socket descriptor 31. If your process uses 32 or fewer sockets,
the bit string is one fullword. If your process uses 33 sockets, the bit string is two
fullwords. The rightmost bit of the second fullword represents socket descriptor 32,
and the leftmost bit of the second fullword represents socket descriptor 63. This
pattern repeats itself for each subsequent fullword. That is, the leftmost bit of
fullword n represents socket 32n-1 and the rightmost bit represents socket 32(n-1).

You define the sockets that you want to test by turning on bits in the string.
Although the bits in the fullwords are numbered from right to left, the fullwords
are numbered from left to right with the leftmost fullword representing socket
descriptor 0-31. For example:

First fullword Second fullword Third fullword
socket descriptor 31...0 socket descriptor 63...32 socket descriptor 95...64

Note: To simplify string processing in COBOL, you can use the program
EZACICO06 to convert each bit in the string to a character. For more information,
see the EZACICO06 topic.

Read operations for the SELECTEX call

Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it,
or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECTEX call. When the SELECTEX call
returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write operations for the SELECTEX call

A socket is selected for writing (ready to be written) when:
* TCP/IP stacks can accept additional outgoing data.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

* The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket is selected for write when the CONNECT
completes.

A call to SEND, SENDTO, WRITE, or WRITEV blocks when the amount of data to
be sent exceeds the amount of data TCP/IP stacks can accept. To avoid this, you
can precede the write operation with a SELECTEX call to ensure that the socket is
ready for writing. After a socket is selected for WRITE, the program can determine
the amount of TCP/IP stacks buffer space available by issuing the GETSOCKOPT
call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to one before issuing the SELECTEX call. When the
SELECTEX call returns, the corresponding bits in the WRETMSK indicate sockets
ready for writing.

Exception operations for the SELECTEX call
For each socket to be tested, the SELECTEX call can check for an existing exception
condition. Two exception conditions are supported:

* The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call. When
this condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

e A socket has received out-of-band data. On this condition, a READ returns the
out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to one. When the SELECTEX call
returns, the corresponding bits in the ERETMSK indicate sockets with exception
conditions.

MAXSOC parameter for the SELECTEX call

The SELECTEX call must test each bit in each string before the returns any results.
For efficiency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECTEX call

tests only bits in the range 0 up to the MAXSOC value minus 1. For example, if
MAXSOC is set to 50, the range is 0 - 49.

TIMEOUT parameter for the SELECTEX call
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECTEX call returns and RETCODE is set to 0.

Parameter values set by the application for the SELECTEX call

MAXSOC
A fullword binary field that specifies the largest socket descriptor number
being checked. The SELECT call tests bits in the range 0 through the
MAXSOC value minus 1. For example, if the MAXSOC value is set to 50,
the bits that would be tested are in the range 0 - 49.

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, set TIMEOUT to be zeros.

Chapter 8. Sockets extended API 357

358

TIMEOUT is specified in the two-word TIMEOUT as follows:

« TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

* TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECTEX to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
does not check for read interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

WSNDMSK
The bit-mask array to control checking for write interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
does not check for write interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
does not check for exception interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

If an ECB list is specified, you must set the high-order bit of the last entry
in the ECB list to one to signify it is the last entry, and you must add the
LIST keyword. The ECBs must reside in the caller primary address space.

If the application intends to pass the address of an ECB list on the
SELECTEX call, then the application must set the high-order bit in the ECB
list address and pass that address using the "BY VALUE" option as
documented in the following example. The remaining parameters must be
set back to the default by specifying "BY REFERENCE" before ERRNO:

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.
03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MINUTES PIC 9(8) BINARY.
01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 ECBLIST-PTR USAGE IS POINTER.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

Where * is the size of the select mask

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
BY VALUE ECBLIST-PTR
BY REFERENCE ERRNO RETCODE.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Note:
¢ The maximum number of ECBs that can be specified in a list is 63
¢ Perform an MVS POST (not a CICS POST) to post the ECB.

Parameter values returned by the application for the SELECTEX
call

ERRNO
A fullword binary field; if RETCODE is negative, this contains an error
number. See |Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field

Value Meaning
>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value is 0) or
one of the caller's ECBs has been posted (ECB value is nonzero and
the caller's descriptor sets are set to 0). The caller must initialize
the ECB values to 0 before issuing the SELECTEX call.

-1 Error; check ERRNO.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

Note: See EZACICO06 for information about bits mask conversion.

Note: See|Appendix E, “Sample programs,” on page 561| for sample programs.

SEND call

The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

* Send out-of-band data, for example, interrupts, aborts, and data marked urgent.
Only stream sockets created in the AF_INET or AF_INET6 address family
support out-of-band data.

* Suppress use of local routing tables. This implies that the caller takes control of
routing and writing network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,

Chapter 8. Sockets extended API 359

with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place this call in a loop, reissuing the call until all data has
been sent.

Note: See ["EZACIC04 program” on page 397| for a subroutine that translates
EBCDIC input data to ASCIIL.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of SEND call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SEND'.

01 S PIC 9(4) BINARY.

01 FLAGS PIC 9(8) BINARY.

01 NO-FLAG PIC 9(8) BINARY VALUE IS 0
01 00B PIC 9(8) BINARY VALUE IS 1.
01 DONT-ROUTE PIC 9(8) BINARY VALUE IS 4
01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
BUF ERRNO RETCODE.

Figure 155. SEND call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the SEND call

SOC-FUNCTION
A 16-byte character field containing SEND. The field is left-aligned and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket
that is sending data.

FLAGS
The binary field should be 4 bytes hexadecimal bytes in length.

360 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Literal value Binary value Description

NO-FLAG x'00000000' No flag is set. The command behaves like a
WRITE call.
MSG-OOB x'00000001" Send out-of-band data (stream sockets only).

Even if the OOB flag is not set, out-of-band
data can be read if the SO-OOBINLINE
option is set for the socket.

MSG-DONTROUTE x'00000004' Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes of data to be
transferred.

BUF The buffer containing the data to be transmitted. BUF should be the size
specified in NBYTE.

Parameter values returned to the application for the SEND call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

=0 A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code

SENDMSG call

The SENDMSG call sends messages on a socket with descriptor S passed in an
array of messages.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 156 on page 362| shows an example of SENDMSG call instructions.

Chapter 8. Sockets extended API 361

Figure 156. SENDMSG call instruction example

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDMSG'.

01 S PIC 9(4) BINARY.
01 MSG.

03 NAME USAGE IS POINTER.

03 NAME-LEN USAGE IS POINTER.

03 10V USAGE IS POINTER.

03 IOVCNT USAGE IS POINTER.

03 ACCRIGHTS USAGE IS POINTER.

03 ACCRLEN USAGE IS POINTER.
01 FLAGS PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 00B PIC 9(8) BINARY VALUE IS 1.
01 DONTROUTE PIC 9(8) BINARY VALUE IS 4.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

01 SENDMSG-IPV4ADDR PIC 9(8) BINARY.
01 SENDMSG-IPV6ADDR.
03 FILLER PIC 9(16) BINARY.
03 FILLER PIC 9(16) BINARY.

LINKAGE SECTION.

01 L1
03 SENDMSG-IOVECTOR.
05 IOV1A USAGE IS POINTER.
05 IOVIAL PIC 9(8) COMP.
05 IOVIL PIC 9(8) COMP.
05 I0V2A USAGE IS POINTER.
05 IOVZ2AL PIC 9(8) COMP.
05 I0V2L PIC 9(8) COMP.
05 IOV3A USAGE IS POINTER.
05 TOV3AL PIC 9(8) COMP.
05 IOV3L PIC 9(8) COMP.

*

* IPv4 Socket Address Structure.

*

03 SENDMSG-NAME.

05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.
05 IP-ADDRESS PIC 9(8) BINARY.
05 RESERVED PIC X(8).

*

* [Pv6 Socket Address Structure.
*
03 SENDMSG-NAME.
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.
05 FLOW-INFO PIC 9(8) BINARY.
05 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
05 SCOPE-ID PIC 9(8) BINARY.

03 SENDMSG-BUFFER1 PIC X(16).

03 SENDMSG-BUFFER?2 PIC X(16).

03 SENDMSG-BUFFER3 PIC X(16).

03 SENDMSG-BUFNO PIC 9(8) COMP.
PROCEDURE DIVISION USING LI.

* For IPv6

362 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

MOVE 19 TO FAMILY.

MOVE 1234 TO PORT.

MOVE O TO FLOW-INFO.

MOVE SENDMSG-IPV6ADDR TO IP-ADDRESS.
MOVE O TO SCOPE-ID.

* For IPv4

MOVE 2 TO FAMILY.

MOVE 1234 TO PORT.

MOVE SENDMSG-IPV4ADDR TO IP-ADDRESS.

SET NAME TO ADDRESS OF SENDMSG-NAME.

SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.
MOVE LENGTH OF SENDMSG-NAME TO NAME-LEN.
SET IOVCNT TO ADDRESS OF SENDMSG-BUFNO.
SET IOVI1A TO ADDRESS OF SENDMSG-BUFFERI.
MOVE O TO IOVIAL.

MOVE LENGTH OF SENDMSG-BUFFER1 TO IOVIL.
SET IOV2A TO ADDRESS OF SENDMSG-BUFFERZ.
MOVE O TO IOV2AL.

MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.
SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.
MOVE O TO IOV3AL.

MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.

SET ACCRIGHTS TO NULLS.
SET ACCRLEN TO NULLS.

MOVE
MOVE
MOVE
MOVE

0 TO FLAGS.

"MESSAGE TEXT 1" TO SENDMSG-BUFFERL.
"MESSAGE TEXT 2" TO SENDMSG-BUFFERZ2.
"MESSAGE TEXT 3" TO SENDMSG-BUFFER3.

CALL '"EZASOKET' USING SOC-FUNCTION MSG FLAGS ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the SENDMSG call

S A value or the address of a halfword binary number specifying the socket
descriptor.
MSG A pointer to an array of message headers from which messages are sent.

Field Description

NAME

On input, a pointer to a buffer where the sender's address is stored
upon completion of the call. The storage being pointed to should
be for an IPv4 socket address or an IPv6 socket address.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary number specifying the IPv4 addressing
family. The value for IPv4 socket descriptor (that is, S
parameter) is a decimal 2, indicating AF_INET.

PORT
A halfword binary number specifying the port number of
the sending socket.

IP-ADDRESS

A fullword binary number specifying the 32-bit IPv4
Internet address of the sending socket.

Chapter 8. Sockets extended API 363

RESERVED
An 8-byte reserved field. This field is required, but is not
used.

The IPv6 socket address structure contains the following fields:
Field Description

FAMILY
A halfword binary field specifying the IPv6 addressing
family. The value for IPv6 socket descriptor (for example, S
parameter) is a decimal 19, indicating AF_INET®6.

PORT
A halfword binary number specifying the port number of
the sending socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow
label. This field must be set to zero.

IP-ADDRESS
A two doubleword, 16-byte binary field specifying the
128-bit IPv6 Internet address, in network byte order, of the
sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces
as appropriate for the scope of the address carried in the
IP-ADDRESS field. A value of zero indicates the SCOPE-ID
field does not identify the set of interfaces to be used, and
can be specified for any address types and scopes. For a
link scope IP-ADDRESS, SCOPE-ID can specify a link
index which identifies a set of interfaces. For all other
address scopes, SCOPE-ID must be set to zero.

NAME-LEN
On input, a pointer to the size of the address buffer that is filled in
on completion of the call.

IOV On input, a pointer to an array of three fullword structures with
the number of structures equal to the value in IOVCNT and the
format of the structures as follows:

Fullword 1
A pointer to the address of a data buffer

Fullword 2
Reserved

Fullword 3
A pointer to the length of the data buffer referenced in
Fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage portion, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the
number of data buffers provided for this call.

364 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This
tield is ignored.

FLAGS
The binary field should be 4 bytes hexadecimal bytes in length.
Literal value Binary value Description
NO-FLAG x'00000000' No flag is set. The command behaves like a
WRITE call.
MSG-OOB x'00000001" Send out-of-band data (stream sockets only).

Even if the OOB flag is not set, out-of-band
data can be read if the SO-OOBINLINE
option is set for the socket.

MSG-DONTROUTE x'00000004' Do not route. Routing is provided by the
calling program.

Parameter values returned by the application for the SENDMSG
call

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error

number. See |[Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

20 A successful call. The value is set to the number of bytes
transmitted.
-1 Check ERRNO for an error code.

SENDTO call

SENDTO is similar to SEND, except that it includes the destination address
parameter. The destination address allows you to use the SENDTO call to send
datagrams on a UDP socket, regardless of whether the socket is connected.

The FLAGS parameter allows you to:
* Send out-of-band data such as interrupts, aborts, and data marked as urgent.

* Suppress use of local routing tables. This implies that the caller takes control of
routing, which requires writing network software.

For datagram sockets SENDTO transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place SENDTO in a loop that repeats the call until all data
has been sent.

Chapter 8. Sockets extended API 365

Note: See [“EZACIC04 program” on page 397| for a subroutine that translates
EBCDIC input data to ASCIL

The following requirements apply to this call:

Requirement

Description

Authorization:

Supervisor state or problem state, any PSW key

Dispatchable unit mode:

Task

Cross memory mode:

PASN = HASN

Amode:

31-bit or 24-bit

ASC mode:

Primary address space control (ASC) mode

Interrupt status:

Enabled for interrupts

Locks:

Unlocked

Control parameters:

All parameters must be addressable by the caller and in the
primary address space

shows an example of SENDTO call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC

X(16) VALUE IS 'SENDTO'.

9(4) BINARY.
9(8) BINARY.

9(8) BINARY VALUE IS 0.
9(8) BINARY VALUE IS 1.
9(8) BINARY VALUE IS 4.

9(8) BINARY.
X(Tength of buffer)

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.

01 S PIC
01 FLAGS. PIC
01 NO-FLAG PIC
01 00B PIC
01 DONT-ROUTE PIC
01 NBYTE PIC
01 BUF PIC
*
* IPv4 Socket Address Structure.
*
01 NAME.
03 FAMILY PIC
03 PORT PIC
03 IP-ADDRESS PIC
03 RESERVED PIC X(8).
*
* [Pv6 Socket Address Structure.

01 NAME.
03 FAMILY PIC
03 PORT PIC

03 FLOW-INFO PIC
03 IP-ADDRESS.
05 FILLER PIC
05 FILLER PIC
03 SCOPE-ID PIC

01 ERRNO PIC
01 RETCODE PIC

PROCEDURE DIVISION.

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.

9(16) BINARY.
9(16) BINARY.
9(8) BINARY.

9(8) BINARY.
S9(8) BINARY.

CALL "EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
BUF NAME ERRNO RETCODE.

Figure 157. SENDTO call instruction example

366

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the SENDTO call

SOC-FUNCTION
A 16-byte character field containing SENDTO. The field is left-aligned and
padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket
sending the data.

FLAGS
A fullword binary field that should be 4 bytes in length.

Literal value Binary value Description

NO-FLAG x'00000000' No flag is set. The command behaves like a

WRITE call.
MSG-OOB x'00000001" Send out-of-band data (stream sockets only).

Even if the OOB flag is not set, out-of-band
data can be read if the SO-OOBINLINE
option is set for the socket.

MSG-DONTROUTE x'00000004' Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF should be
the size specified in NBYTE.

NAME
Specifies the IPv4 socket address structure as follows:

FAMILY
A halfword binary field containing the addressing family. For
TCP/IP the value must be a decimal 2, indicating AF_INET.

PORT A halfword binary field containing the port number bound to the
socket.

IP-ADDRESS
A fullword binary field containing the socket’s 32-bit IPv4 Internet
address.

RESERVED
Specifies an 8-byte reserved field. This field is required, but not
used.

Specifies the IPv6 socket address structure as follows:

FAMILY
A halfword binary field containing the addressing family. For
TCP/IP stacks the value must be a decimal 19, indicating
AF_INET6.

PORT
A halfword binary field containing the port number bound to the
socket.

Chapter 8. Sockets extended API 367

368

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This field must be set to zero.

IP-ADDRESS
A 16-byte binary field containing the socket's 128-bit IPv6 Internet
address.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IP-ADDRESS field. A value of zero indicates the SCOPE-ID field
does not identify the set of interfaces to be used, and can be
specified for any address types and scopes. For a link scope
IP-ADDRESS, SCOPE-ID can specify a link index which identifies a
set of interfaces. For all other address scopes, SCOPE-ID must be
set to zero.

Parameter values returned to the application for the SENDTO call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

20 A successful call. The value is set to the number of bytes
transmitted.
-1 Check ERRNO for an error code

SETSOCKOPT call

The SETSOCKOPT call sets the options associated with a socket.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. The OPTLEN parameter must be set to the size
of the data pointed to by OPTVAL.

The following requirements apply to this call:

Description Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

shows an example of SETSOCKOPT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SETSOCKOPT'.

01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.
01 OPTVAL PIC 9(8) BINARY.
01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S OPTNAME
OPTVAL OPTLEN ERRNO RETCODE.

Figure 158. SETSOCKORPT call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the SETSOCKOPT
call

SOC-FUNCTION
A 16-byte character field containing 'SETSOCKOPT'. The field is
left-aligned and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME
Input parameter. See [“Parameter values returned to the application for thel
[GETSOCKOPT call” on page 295| for a list of the options and their unique
requirements. See|Appendix C, “GETSOCKOPT /SETSOCKOPT command|
(values,” on page 465| for the numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underscore
character. Fields representing the option name should contain dashes
instead.

OPTVAL
Input parameter. Contains data that further defines the option specified in
OPTNAME. See [“Parameter values returned to the application for the
IGETSOCKOPT call” on page 295 for a list of the options and their unique
requirements.

OPTLEN
Input parameter. A fullword binary field specifying the length of the data
specified in OPTVAL. See [“Parameter values returned to the application for]
[the GETSOCKOPT call” on page 295| for how to determine the value of
OPTLEN.

Parameter values returned to the application for the
SETSOCKOPT call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Chapter 8. Sockets extended API 369

Value Description

0 Successful call.

-1

Check ERRNO for an error code.

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IP_ ADD_MEMBERSHIP Contains the IP_MREQ structure N/A
as defined in
Use this option to enable an application to | 5YS1.MACLIB(BPXYSOCK). The
join a multicast group on a specific IP_MREQ structure contains a
interface. An interface has to be specified 4-byte IPv4 multicast address
with this option. Only applications that followed by a 4-byte IPv4 interface
want to receive multicast datagrams need to | 3ddress.
join multicast groups.
See SEZAINST(CBLOCK) for the
This is an IPv4-only socket option. PL/I example of IP_MREQ.
See SEZAINST(EZACOBOL) for
the COBOL example of I>-MREQ.
IP_ADD_SOURCE_MEMBERSHIP Contains the IP MREQ_SOURCE |N/A
structure as defined in
Use this option to enable an application to | 5YS1.MACLIB(BPXYSOCK). The
join a source multicast group on a specific IP_MREQ _SOURCE structure
interface and a specific source address. You | contains a 4-byte IPv4 multicast
must specify an interface and a source address followed by a 4-byte IPv4
address with this option. Applications that |source address and a 4-byte IPv4
want to receive multicast datagrams need to |interface address.
join source multicast groups.
See SEZAINST(CBLOCK) for the
This is an IPv4-only socket option. PL/I example of
IP_MREQ_SOURCE.
See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.
IP_BLOCK_SOURCE Contains the IP MREQ_SOURCE [N/A

Use this option to enable an application to
block multicast packets that have a source
address that matches the given IPv4 source
address. You must specify an interface and a
source address with this option. The
specified multicast group must have been
joined previously.

This is an IPv4-only socket option.

structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte IPv4
source address and a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.

370

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IP_DROP_MEMBERSHIP Contains the IP_MREQ structure N/A
as defined in
Use this option to enable an application to | 5YS1.MACLIB(BPXYSOCK). The
exit a multicast group or to exit all sources |[P_MREQ structure contains a
for a multicast group. 4-byte IPv4 multicast address
L . followed by a 4-byte IPv4 interface
This is an IPv4-only socket option. address.
See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.
See SEZAINST(EZACOBOL) for
the COBOL example of IP-MREQ.
IP_DROP_SOURCE_MEMBERSHIP Contains the IP. MREQ_SOURCE |N/A

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte IPv4
source address and a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending outbound
multicast datagrams from the socket
application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a time.

A 4-byte binary field containing an
IPv4 interface address.

A 4-byte binary field containing an
IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams are
looped back for multicast datagrams sent to
a group to which the sending host itself
belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.
If enabled, will contain a 1.

If disabled, will contain a 0.

Chapter 8. Sockets extended API 371

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_ MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte IPv4
source address and a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of
IP-MREQ-SOURCE.

372

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IPV6_ADDR_PREFERENCES

Use this option to query or set IPv6 address
preferences of a socket. The default source
address selection algorithm considers these
preferences when it selects an IP address
that is appropriate to communicate with a
given destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences. The
stack could assign a source IP address that
does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source IP
address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:

IPV6_PREFER_SRC_HOME
(X'00000001")
Prefer home address

IPV6_PREFER_SRC_COA
(X'00000002")
Prefer care-of address

IPV6_PREFER_SRC_TMP
(X'00000004")
Prefer temporary address

IPV6_PREFER_SRC_PUBLIC
(X'00000008")
Prefer public address

IPV6_PREFER_SRC_CGA
(X'00000010")
Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020"
Prefer
non-cryptographically
generated address

Some of these flags are
contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES _
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:

IPV6_PREFER_SRC_HOME
(X'00000001")
Prefer home address

IPV6_PREFER_SRC_COA
(X'00000002")
Prefer care-of address

IPV6_PREFER_SRC_TMP
(X'00000004")
Prefer temporary address

IPV6_PREFER_SRC_PUBLIC
(X'00000008")
Prefer public address

IPV6_PREFER_SRC_CGA
(X'00000010")
Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020")
Prefer
non-cryptographically
generated address

See IPV6_ADDR_ PREFERENCES
and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Chapter 8. Sockets extended API 373

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the socket
join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
IPV6-MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the socket
leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
IPV6-MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is 1
hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit
range.

Note: An application must be APF
authorized to enable it to set the
hop limit value above the system
defined hop limit value. CICS
applications cannot execute as APF
authorized.

Contains a 4-byte binary value in
the range 0 — 255 indicating the
number of multicast hops.

374

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index of
the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface index
number.

Contains a 4-byte binary field
containing an IPv6 interface index
number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams are
sent to a group to which the sending host
itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop limit
used for outgoing unicast IPv6 packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If not
specified, then the default is 1 hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit
range.

Note: APF authorized applications
are permitted to set a hop limit
that exceeds the system configured
default. CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 — 255 indicating the
number of unicast hops.

IPV6_V60ONLY

Use this option to set or determine whether
the socket is restricted to send and receive
only IPv6 packets. The default is to not
restrict the sending and receiving of only
IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

Chapter 8. Sockets extended API 375

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

MCAST_BLOCK_SOURCE Contains the N/A
GROUP_SOURCE_REQ structure
Use this option to enable an application to | 55 defined in
block multicast packets that have a source | SYS1 MACLIB(BPXYSOCK). The
address that matches the given source GROUP_SOURCE_REQ structure
address. You must specify an interface index | contains a 4-byte interface index
and a source address with this option. The | uymber followed by a socket
specified multicast group must have been address structure of the multicast
joined previously. address and a socket address
structure of the source address.
See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.
See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.
MCAST_JOIN_GROUP Contains the GROUP_REQ N/A
structure as defined in
Use this option to enable an application to | 5YS1.MACLIB(BPXYSOCK). The
join a multicast group on a specific GROUP_REQ structure contains a
interface. You must specify an interface 4-byte interface index number
index. Applications that want to receive followed by a socket address
multicast datagrams must join multicast structure of the multicast address.
groups.
See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.
See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-REQ.
MCAST_JOIN_SOURCE_GROUP Contains the N/A

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the multicast
address and a socket address
structure of the source address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.

376

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources for
a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains a
4-byte interface index number
followed by a socket address
structure of the multicast address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the multicast
address and a socket address
structure of the source address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given multicast group. You must specify an
interface index and a source address with
this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the multicast
address and a socket address
structure of the source address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of
GROUP-SOURCE-REQ.

N/A

Chapter 8. Sockets extended API 377

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to ASCII.
When SO_ASCII is not set, data is not
translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

SO_BROADCAST

Use this option to set or determine whether
a program can send broadcast messages
over the socket to destinations that can
receive datagram messages. The default is
disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Note:
1. This is a REXX-only socket option.

2. This option has meaning only for stream
sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set, data
is not translated to or from EBCDIC. This
option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the
data.

SO_ERROR

Use this option to request pending errors on
the socket or to check for asynchronous
errors on connected datagram sockets or for
other errors that are not explicitly returned
by one of the socket calls. The error status is
clear afterwards.

N/A

A 4-byte binary field containing
the most recent ERRNO for the
socket.

378

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_KEEPALIVE

Use this option to set or determine whether

the keep alive mechanism periodically sends
a packet on an otherwise idle connection for
a stream socket.

The default is disabled.

When activated, the keep alive mechanism
periodically sends a packet on an otherwise
idle connection. If the remote TCP does not
respond to the packet or to retransmissions
of the packet, the connection is terminated
with the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine how
TCP/IP processes data that has not been
transmitted when a CLOSE is issued for the
socket. The default is disabled.

Note:

1. This option has meaning only for stream
sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is in
nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send data
for a specified time. This usually allows
sufficient time to complete the data transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field containing
two 4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable this
option. Set LINGER to the number
of seconds that TCP/IP lingers
after the CLOSE is issued.

Contains an 8-byte field containing
two 4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

Chapter 8. Sockets extended API 379

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.
Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data is
placed in the normal data input queue as it
is received and is available to a RECV or a
RECVFROM even if the OOB flag is not set
in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available to a
RECV or a RECVFROM only when the OOB
flag is set in the RECV or the RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine the
size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

¢ TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP Socket

* UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

e The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP receive
buffer.

If disabled, contains a 0.

380

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_RCVTIMEO

Use this option to control or determine the
maximum length of time that a receive-type
function can wait before it completes.

If a receive-type function has blocked for
the maximum length of time that was
specified without receiving data, control is
returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a
receive-type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout takes
precedence. The receive-type function can
return the partial count. See the explanation
of that operation's MSG_WAITALL flag
parameter.

The following receive-type functions are
supported:

* READ

* READV

* RECV

* RECVFROM
* RECVMSG

This option requires a TIMEVAL
structure, which is defined in
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds can be a value in the
range 0 - 2678400 (equal to 31
days), and the microseconds can
be a value in the range 0 - 1000000
(equal to 1 second). Although
TIMEVAL value can be specified
using microsecond granularity, the
internal TCP/IP timers that are
used to implement this function
have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in the
SYS1.MACLIB(BPXYRLIM) macro.
The TIMEVAL structure contains
the number of seconds and
microseconds, which are specified
as fullword binary numbers. The
number of seconds value that is
returned is in the range O -
2678400 (equal to 31 days). The
number of microseconds value
that is returned is in the range O -
1000000.

Chapter 8. Sockets extended API 381

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be bound
only once. If the address and port have been
already bound, then a subsequent BIND will
fail and result error will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

* A server can BIND the same port
multiple times as long as every invocation
uses a different local IP address and the
wildcard address INADDR_ANY is used
only one time per port.

* A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

 For datagram sockets, multicasting is
supported so multiple bind() calls can be
made to the same class D address and
port number.

¢ If you require multiple servers to BIND to
the same port and listen on
INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIPPROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine the
size of the data portion of the TCP/IP send
buffer. The size is of the TCP/IP send buffer
is protocol specific and is based on the
following:

* The TCPSENDBufrsize keyword on the

TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP socket

¢ The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP socket

e The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

382

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

SO_SNDTIMEO

Use this option to control or determine the
maximum length of time that a send-type
function can remain blocked before it
completes.

If a send-type function has blocked for this
length of time, it returns with a partial
count or, if no data is sent, with an errno set
to EWOULDBLOCK. The default value for
this is 0, which indicates that a send-type
function does not time out.

For a SETSOCKOPT, the following
send-type functions are supported:

* SEND

* SENDMSG
* SENDTO
* WRITE
 WRITEV

This option requires a TIMEVAL
structure, which is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0 -
2678400 (equal to 31 days), and the
microseconds value is in the range
0 - 1000000 (equal to 1 second).
Although the TIMEVAL value can
be specified using microsecond
granularity, the internal TCP/IP
timers that are used to implement
this function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains the
number of seconds and
microseconds, which are specified
as fullword binary numbers. The
number of seconds value that is
returned is in the range O -
2678400 (equal to 31 days). The
microseconds value that is
returned is in the range O -
1000000.

SO_TYPE

Use this option to return the socket type.

N/A

A 4-byte binary field indicating the
socket type:

X'1" indicates SOCK_STREAM.
X'2" indicates SOCK_DGRAM.

X'3'" indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine whether
a socket-specific timeout value (in seconds)
is to be used in place of a
configuration-specific value whenever keep
alive timing is active for that socket.

When activated, the socket-specified timer
value remains in effect until respecified by
SETSOCKOPT or until the socket is closed.
See the [z/OS Communications Server: IP|
[Programmer's Guide and Reference| for
more information about the socket option
parameters.

A 4-byte binary field.

To enable, set to a value in the
range 1 - 2147460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is in
effect for the given socket.

If disabled, contains a 0 indicating
keep alive timing is not active.

Chapter 8. Sockets extended API 383

Table 23. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL (output)

TCP_NODELAY

Use this option to set or determine whether
data sent over the socket is subject to the
Nagle algorithm (RFC 896).

Under most circumstances, TCP sends data
when it is presented. When this option is
enabled, TCP will wait to send small
amounts of data until the acknowledgment
for the previous data sent is received. When
this option is disabled, TCP will send small
amounts of data even before the
acknowledgment for the previous data sent
is received.

Note: Use the following to set
TCP_NODELAY OPTNAME value for
COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
VALUE 2147483649.

01 TCP-NODELAY-REDEF REDEFINES
TCP-NODELAY-VAL.

05 FILLER PIC 9(6) BINARY.

05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.
To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.
If enabled, contains a 0.

If disabled, contains a 1.

SHUTDOWN call

One way to terminate a network connection is to issue the CLOSE call which
attempts to complete all outstanding data transmission requests prior to breaking
the connection. The SHUTDOWN call can be used to close one-way traffic while
completing data transfer in the other direction. The HOW parameter determines
the direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter
determines the amount of time the system waits before releasing the connection.
For example, with a LINGER value of 30 seconds, system resources (including the
IMS or CICS transaction) remain in the system for up to 30 seconds after the
CLOSE call is issued. In high volume, transaction-based systems like CICS and
IMS, this can impact performance severely.

384

If the SHUTDOWN call is issued, when the CLOSE call is received, the connection
can be closed immediately, rather than waiting for the 30-second delay.

If you issue SHUTDOWN for a socket that currently has outstanding socket calls
pending, see |Table 24| to determine the effects of this operation on the outstanding
socket calls.

Table 24. Effect of SHUTDOWN socket call

Socket calls in Local program Remote program

local program SHUTDOWN |SHUTDOWN |SHUTDOWN |SHUTDOWN
SEND RECEIVE RECEIVE SEND

Write calls Error number Error number
EPIPE on first EPIPE on second
call call*

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Table 24. Effect of SHUTDOWN socket call (continued)

Socket calls in

Local program

Remote program

local program

SHUTDOWN
SEND

SHUTDOWN
RECEIVE

SHUTDOWN
RECEIVE

SHUTDOWN
SEND

Read calls

Zero length
return code

Zero length
return code

* If you issue two write calls immediately, both might be successful, and an EPIPE error
number might not be returned until a third write call is issued.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode:

31-bit or 24-bit

ASC mode:

Primary address space control (ASC) mode

Interrupt status:

Enabled for interrupts

Locks:

Unlocked

Control parameters:

All parameters must be addressable by the caller and in the

primary address space

[Figure 159 on page 386|shows an example of SHUTDOWN call instructions.

Chapter 8. Sockets extended API

385

WORKING-STORAGE SECTION.

01
01
01
01
01
01
01
01

SOC-FUNCTION PIC X(16) VALUE IS 'SHUTDOWN'.
S PIC 9(4) BINARY.

HOW PIC 9(8) BINARY.

END-FROM PIC 9(8) BINARY VALUE 0.
END-TO PIC 9(8) BINARY VALUE 1.
END-BOTH PIC 9(8) BINARY VALUE 2.
ERRNO PIC 9(8) BINARY.

RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 159. SHUTDOWN call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249 |

Parameter values set by the application for the SHUTDOWN call

SOC-FUNCTION
A 16-byte character field containing SHUTDOWN. The field is left-aligned
and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
shutdown.

HOW A fullword binary field. Set to specify whether all or part of a connection is
to be shut down. The following values can be set:

Value Description

0 (END-FROM)
Ends further receive operations.

1 (END-TO)
Ends further send operations.

2 (END-BOTH)
Ends further send and receive operations.

Parameter values returned to the application for the SHUTDOWN
call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See |Appendix B, “Return codes,” on page 449 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call

-1 Check ERRNO for an error code

SOCKET call

The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

The following requirements apply to this call:

386 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

shows an example of SOCKET call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC
= For AF_INET

01

AF

* For AF_INET6

01
01
01
01

AF
SOCTYPE
STREAM
DATAGRAM

PROTO
ERRNO
RETCODE

PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION AF SOCTYPE
PROTO ERRNO RETCODE.

X(16) VALUE IS 'SOCKET'.

9(8)

9(8)
9(8)
9(8)
9(8)

9(8)
9(8)

COMP VALUE 2.

BINARY VALUE 19.
BINARY.

BINARY VALUE 1.
BINARY VALUE 2.

BINARY.
BINARY.

S9(8) BINARY.

Figure 160. SOCKET call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the SOCKET call

SOC-FUNCTION
A 16-byte character field containing 'SOCKET'. The field is left-aligned and
padded on the right with blanks.

AF

SOCTYPE

A fullword binary field set to the addressing family. For TCP/IP the value
is set to a decimal 2 for AF_INET, or a decimal 19, indicating AF_INET®6.

A fullword binary field set to the type of socket required. The types are:

Value Description

1

Stream sockets provide sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mechanism for
out-of-band data.

Datagram sockets provide datagrams, which are connectionless
messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order,
lost, or delivered multiple times.

Chapter 8. Sockets extended API 387

388

PROTO
A fullword binary field set to the protocol to be used for the socket. If this
field is set to 0, the default protocol is used. For streams, the default is
TCP; for datagrams, the default is UDP.

PROTO numbers are found in the hig.etc.proto data set.

Parameter values returned to the application for the SOCKET call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

>or=0
Contains the new socket descriptor

-1 Check ERRNO for an error code

TAKESOCKET call

The TAKESOCKET call acquires a socket from another program and creates a new
socket. Typically, a child server issues this call using client ID and socket descriptor
data that it obtained from the concurrent server. See [“GIVESOCKET call” on page|
for a discussion of the use of GETSOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in
RETCODE. You should use this new socket descriptor in subsequent calls such as
GETSOCKOPT, which require the S (socket descriptor) parameter.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 161 on page 389|shows an example of TAKESOCKET call instructions.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC

01 SOCRECV PIC
01 CLIENT.
03 DOMAIN PIC
03 NAME PIC
03 TASK PIC
03 RESERVED PIC
01 ERRNO PIC
01 RETCODE PIC

X(16) VALUE IS 'TAKESOCKET'.

9(4) BINARY.

9(8) BINARY.
X(8).
X(8).
X(20).
9(8) BINARY.
S9(8) BINARY.

PROCEDURE DIVISION.

CALL "EZASOKET' USING SOC-FUNCTION SOCRECV CLIENT
ERRNO RETCODE.

Figure 161. TAKESOCKET call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the TAKESOCKET

call

SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left-aligned
and padded to the right with blanks.

SOCRECV

A halfword binary field set to the descriptor of the socket to be taken. The
socket to be taken is passed by the concurrent server.

CLIENT

Specifies the client ID of the program that is giving the socket. In CICS,
these parameters are passed by the listener program to the program that
issues the TAKESOCKET call. The information is obtained using EXEC
CICS RETRIEVE.

DOMAIN
A fullword binary field set to the domain of the program giving

the socket. It is always a decimal 2, indicating AF_INET, or a
decimal 19, indicating AF_INET6.

Rule: The TAKESOCKET can acquire only a socket of the same
address family from a GIVESOCKET.

NAME
Specifies an 8-byte character field set to the MVS address space
identifier of the program that gave the socket.

TASK Specifies an 8-byte character field set to the task identifier of the
task that gave the socket.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application for the
TAKESOCKET call

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

Chapter 8. Sockets extended API 389

RETCODE
A fullword binary field that returns one of the following:

Value Description

>or=0
Contains the new socket descriptor

-1 Check ERRNO for an error code

TERMAPI call

This call terminates the session created by INITAPI. All TCP/IP stacks resources
allocated to the task are cleaned up. This includes any outstanding open sockets or
sockets that have been given away with the GIVESOCKET call but have not been
taken with a TAKESOCKET call.

In the CICS environment, the use of TERMAPI is not recommended. CICS task
termination processing automatically performs the functions of TERMAPI. A CICS
application program should issue TERMAPI only if there is a particular need to
terminate the session before task termination.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 162 on page 391|shows an example of TERMAPI call instructions.

390 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'TERMAPI'.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION.

Figure 162. TERMAPI call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application for the TERMAPI call

SOC-FUNCTION
A 16-byte character field containing TERMAPL The field is left-aligned and
padded to the right with blanks.

WRITE call

The WRITE call writes data on a connected socket. This call is similar to SEND,
except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the
receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.
For example, if a program wishes to send 1000 bytes, each call to this function can
send any number of bytes, up to the entire 1000 bytes. The number of bytes sent
are returned in RETCODE. Therefore, programs using stream sockets should place
this call in a loop, calling this function until all data has been sent.

See ["EZACIC04 program” on page 397| for a subroutine that translates EBCDIC
output data to ASCIL

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]
[requirements for the Callable Socket API” on page 245

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

[Figure 163 on page 392| shows an example of WRITE call instructions.

Chapter 8. Sockets extended API 391

WORKING-STORAGE SECTION.
SOC-FUNCTION PIC X(16) VALUE IS 'WRITE'.

01
01
01
01
01
01

S

NBYTE
BUF
ERRNO
RETCODE

PIC 9(4) BINARY.
PIC 9(8) BINARY.
PIC X(length of buffer).
PIC 9(8) BINARY.
PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

Figure 163. WRITE call instruction example

392

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the WRITE call

SOC-FUNCTION
A 16-byte character field containing WRITE. The field is left-aligned and
padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be
transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Parameter values returned to the application for the WRITE call

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See [Appendix B, “Return codes,” on page 449| for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

20 A successful call. A return code greater than zero indicates the
number of bytes of data written.
-1 Check ERRNO for an error code.

WRITEV call

The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

Requirement Description

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Requirement Description
Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

shows an example of WRITEV call instructions.

WORKING-STORAGE SECTION.

01 SOKET-FUNCTION PIC X(16) VALUE 'WRITEV'.
01 S PIC 9(4) BINARY.

01 IOVCNT PIC 9(8) BINARY.

01 IOvV.

03 BUFFER-ENTRY OCCURS N TIMES.
05 BUFFER-POINTER USAGE IS POINTER.
05 RESERVED PIC X(4).
05 BUFFER-LENGTH PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

SET BUFFER-POINTER(1) TO ADDRESS OF BUFFERI.
SET BUFFER-LENGTH(1) TO LENGTH OF BUFFERL.
SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.

SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

CALL '"EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 164. WRITEYV call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

Parameter values set by the application for the WRITEV call

S A value or the address of a halfword binary number specifying the
descriptor of the socket from which the data is to be written.

IOV An array of tripleword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:

Fullword 1
The address of a data buffer.

Fullword 2
Reserved.

Fullword 3
The length of the data buffer referenced in Fullword 1.

IOVCNT
A fullword binary field specifying the number of data buffers provided for
this call.

Chapter 8. Sockets extended API 393

Parameters returned by the application for the WRITEV call

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See |Appendix B, “Return codes,” on page 449 for information
about ERRNO return codes.

RETCODE
A fullword binary field.

Value Meaning
<0 Error. Check ERRNO.
0 Connection partner has closed connection.

>0 Number of bytes sent.

Using data translation programs for socket call interface

394

In addition to the socket calls, you can use the following utility programs to
translate data.

Data translation from ASCIl and EBCDIC data notation

TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its
subsystems use EBCDIC data notation. In situations where data must be translated
from one notation to the other, you can use the following utility programs:

EZACICO4
Translates EBCDIC data to ASCII data using an EBCDIC-to-ASCII translation
table as described in |z/OS Communications Server: IP Configuration|

eference)

EZACICO5
Translates ASCII data to EBCDIC data using an ASCII-to-EBCDIC translation
table as described in |z/OS Communications Server: IP Configuration|

eference)

EZACIC14
An alternative to EZACIC04 that translates EBCDIC data to ASCII data using
the translation table listed in [“EZACIC14 program” on page 409,

EZACIC15
An alternative to EZACICO5 that translates ASCII data to EBCDIC data using
the translation table listed in ['EZACIC15 program” on page 411

A sample program that performs these translations is also available; you can
modify them to perform any translations not provided by these routines. See the
EZACICTR member in the SEZAINST data set for more information.

It is not necessary to define these programs to CICS. If your application
dynamically links these programs, then you must define them to CICS as follows:

DEFINE PROGRAM(EZACICO4)

DESCRIPTION(TRANSLATE EBCDIC-8 BIT TO ASCII-8 BIT)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

DEFINE PROGRAM(EZACICO5)
DESCRIPTION(TRANSLATE ASCII-8 BIT TO EBCDIC-8 BIT)

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

DEFINE PROGRAM(EZACIC14)

DESCRIPTION(TRANSLATE EBCDIC-8 BIT TO ASCII-8 BIT)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

DEFINE PROGRAM(EZACIC15)

DESCRIPTION(TRANSLATE ASCII-8 BIT TO EBCDIC-8 BIT)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

For more information about specifying the key that CICS uses to give control to
the program and details about RDO resource types and their attributes, Program
Definition Attributes, and the EXECKEY attribute, see the CICS Transaction Server
information on this website: fttp:/ /www-01.ibm.com/software/htp/cics/library /|

Bit string processing

In C-language, bit strings are often used to convey flags, switch settings, and so
on; TCP/IP stacks makes frequent uses of bit strings. However, because bit strings
are difficult to decode in COBOL, TCP/IP includes:

EZACICO6
Translates bit-masks into character arrays and character arrays into bit-masks.

EZACICO8
Interprets the variable length address list in the HOSTENT structure returned
by GETHOSTBYNAME or GETHOSTBYADDR.

EZACICO9
Interprets the ADDRINFO structure returned by GETADDRINFO.

It is not necessary to define these programs to CICS. If your application
dynamically links these programs, then you must define them to CICS as follows:

DEFINE PROGRAM(EZACICO6)

DESCRIPTION(TRANSLATE EBCDIC-8 BIT TO ASCII-8 BIT)
GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS(ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

DEFINE PROGRAM(EZACICO8)

DESCRIPTION(INTERPRET HOSTENT)

GROUP (SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

DEFINE PROGRAM(EZACICO9)

DESCRIPTION(INTERPRET ADDRINFO)
GROUP (SOCKETS)

Chapter 8. Sockets extended API 395

http://www-01.ibm.com/software/htp/cics/library/

396

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)
RELOAD(NO) RESIDENT(NO) USELPACOPY (NO)

LANGUAGE (ASSEMBLER) STATUS (ENABLED) USAGE (NORMAL)
CONCURRENCY (THREADSAFE)

For more information about specifying the key that CICS uses to give control to
the i roiram, visit this website: |http:/ /www-01.ibm.com /software /htp /cics/|

CALL instruction utility programs

This topic describes the CALL instruction API for TCP/IP application programs
written in the COBOL, PL/I, or High Level Assembler language. The format and
parameters are described for each utility call.

Note: For a PL/I program, include the following statement before your first call
instruction:

DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

Understanding COBOL, assembler, and PL/I call formats:
These utility programs are invoked by calling the EZACICnn program. The
parameters look differently due to the differences in the programming languages.

COBOL language call format sample:

The following sample illustrates the utility program call format for COBOL
language programs:

>>-- CALL "EZACICnn' USING parml, parm2, --><

parm n
A variable number of parameters that depends on the type call.

The utility programs in this topic contain an explanation of the call parameters.

Assembler language call format sample:

The following sample illustrates the utility program call format for assembler
language programs. Because DATAREG is used to access the application’s working
storage, applications using the assembler language format should not code
DATAREG but should let it default to the CICS data register.

>>-- CALL EZACICnn, (parml, parm2, ...),VL,MF=(E, PARMLIST) --><

PARMLIST is a remote parameter list defined in dynamic storage DFHEISTG. This
list contains addresses of 30 parameters that can be referenced by all execute forms
of the CALL.

Note: This form of CALL is necessary to meet the CICS requirement for
quasi-reentrant programming
parm n

A variable number of parameters that depends on the type call.

The utility programs in this topic contain an explanation of the call parameters.

PL/I language call format sample:
The following sample illustrates the utility program call format for PL/I language
programs:

>>-- CALL EZACICnn (parml, parm2, ...); --><

parm n

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

http://www-01.ibm.com/software/htp/cics/library/
http://www-01.ibm.com/software/htp/cics/library/

parm n

See the utility programs in this topic for an explanation of the parameters.

A variable number of parameters that depends on the type call.

EZACICO04 program

The EZACIC04 program is used to translate EBCDIC data to ASCII data.

shows an example of how EZACIC04 translates a byte of EBCDIC data
to ASCII data.

ASCII second hex digit of byte of EBCDIC data
output by |---mmmmmm oo
EZACICO4 ol 1| 2| 3] 4] 5] 6] 7] 8] 9] A] B| c| D| E| F
e, Uy R Sy Sy Tur JUpR R S Y
0 |00|01]|02|03|1A|09|1A|7F|1A|1A|1A]0B|OC|0OD|OE|OF
B e S e e e e e e el E o el e Rl Tl
1 |10|11]12|13|1A|0A|08|1A|18|19]1A|1A|1C|1D|1E|1F
B el S e e e e e el o D LR el e Tl Tl
2 |1A|1A|1C|1A|1A|0A|17]1B|1A| 1A|1A|1A|1A|05]| 06|07
B D e e L it Tl SEEE ST P D PR SRl TP SRl PPl e
3 |1A|1A|16|1A|1A|1E|1A|04|1A|1A|1A| 1A| 14| 15]1A| 1A
B e e Lt s e e T e e e e ekt STl JEEE (P
4 |20|A6|E1|80|EB|90|9F|E2|AB|8B|9B|2E|3C|28|2B|7C
B e e e e it s el e R e Tl T
5 |26|A9|AA|9C|DB|A5|99|E3|A8|9E|21]|24|2A]29|3B]|5E
B e b s e L e e e e e e Tl (Tl
first | 6 |2D|2F|DF|DC|9A|DD|DE|98|9D|AC|BA|2C|25|5F|3E|3F
hex P T R e NGRS S P T
digit | 7 |D7|88|94|B0|B1|B2|FC|D6|FB|60|3A|23]|40|27|3D|22
of B D S e S e e e el e el L el e Rl Tl
byte 8 |F8|61|62|63|64|65|66|67|68|69|96|A4|F3|AF|AE|C5
of B e e e e e L R e e ol T e TR Tl L
EBCDIC | 9 |8C|6A|6B|6C|6D|6E|6F|70]71]|72]97]87|CE|93|F1|FE
data B R s T e e T T T e ek Tt P
A |c8|7€E|73|74|75|76|77|78|79|7A|EF|CO|DA|5B|F2|AE
B e e it it sl L T e R e e e T T h
B |B5|B6|FD|B7|B8|B9|E6|BB|BC|BD|8D|D9|BF|5D|D8|C4
B e e e e it s el e R e Tl T
C |7B|41|42|43|44|45|46]|47|48]|49|CB|CA|BE|ES|EC|ED
———t ettt ettt et et e e e e e e -
D |7D|4A|4B|4C|4D|4E|4F|50|51|52|AL|AD|F5|F4|A3|8F
B e e e e e e el e el E o el e Tl Bl
E |5C|E7|53|54|55|56|57|58|59|5A|A0|85|8E|E9|E4|D1
B el S e e e e e el o D LR el e Tl Tl
F |30|31|32|33]|34|35|36|37]|38|39|B3|F7|FO|FA|A7|FF

Figure 165. EZACIC04 EBCDIC-to-ASClII table

[Figure 166 on page 398|shows an example of EZACIC04 call instructions.

Chapter 8. Sockets extended API

397

WORKING-STORAGE SECTION.
01 OUT-BUFFER PIC X(length of output).

01 LENGTH PIC 9(8) BINARY.
PROCEDURE DIVISION.
CALL 'EZACICO4' USING OUT-BUFFER LENGTH. IF RETURN-CODE > 0
THEN

DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 166. EZACICO04 call instruction example

398

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249 |

OUT-BUFFER
A buffer that contains the following:
* When called — EBCDIC data
* Upon return — ASCII data

LENGTH
Specifies the length of the data to be translated.

EZACICO05 program

The EZACICO05 program is used to translate ASCII data to EBCDIC data. EBCDIC
data is required by COBOL, PL/I, and assembler language programs.

[Figure 167 on page 399 shows an example of how EZACICO5 translates a byte of
ASCII data to EBCDIC data.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

first
hex
digit
of
byte
of
ASCII
data

EBCDIC second hex digit of byte of ASCII data
output by |====mmm e
EZACICO5 ol 1| 2| 3] 4| 5| 6] 7| 8] 9] A] B| c| D| E| F

B e L e S S e e S e el
0 |00|01]02|03]37|2D|2E|2F|16|05]25|0B[0C|0D|OE|OF
Bt e e e e e e e bk sEEE sl sl SRl s Sl Sl
1 |10]11]12]13]3C|3D|32|26|18|19|3F|27|22|1D|35]1F
P T R e NGRS S P T
2 |40|5A|7F|7B|5B|6C|50|7D]|4D|5D|5C|4E|6B|60|4B|61
B e S e e e e e e el E o el e Rl Tl
3 |FO|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F
B el S e e e e e el o D LR el e Tl Tl
4 |7c|c1|c2|c3|c4|cs|c6|c7|c8]|co|D1|D2|D3|D4|D5|D6
B e S e e e S e e e e e L R Tl Pl
5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|EO|BD|5F|6D
———t-t-—t-—t-—t-t -t - -
6 |79|81|82|83|84|85|86|87|88]89]91]92]93]94]95|96
B e Rt e e S e e e el
7 197]198]99|A2|A3|A4|A5|A6|A7|AS|A9|CO|4F|DO|AL|0O7
Bt e e e e et e e itk sEEE sl Sl SRl s el Sl S
8 |00]01]062|03|37|2D|2E|2F|16]05|25]|0B|0C|0D|OE|OF
P Tt PR S iyt T S T g
9 |10|11]12|13|3C|3D|32|26|18]|19|3F|27|22]|1D|35]|1F
B e e e e e e el e el E o el e Tl Tl
A |40]|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|AF|61
B e S e e e L e e e el e o Tl TPl
B |FO|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F
B e e et e e e e e ksl sl el el e
C |7c|c1|c2|c3|ca|cs|c6|c7|c8]|co|Dp1|D2|D3|D4|D5|D6
B e L e S S e e S e e el
D |D7|D8|D9|E2|E3|E4|E5|E6|E7|ES|E9|AD|EO|BD|5F|6D
B e Rt e e S e e L e e Sl
E |79]81|82|83|84|85|86|87|88|89|91|92|93|94|95|96
Bt e e e e et e e ik sEEE sl sl SRl s el Sl
F |97|98]|99|A2|A3|A4|A5|A6|A7|A8|A9|CO|4F|DO|AL|0O7

Figure 167. EZACIC05 ASClII-to-EBCDIC

[Figure 168 on page 400|shows an example of EZACICO5 call instructions.

Chapter 8. Sockets extended API

399

WORKING-STORAGE SECTION.
01 IN-BUFFER PIC X(length of output)

01 LENGTH PIC 9(8) BINARY VALUE
PROCEDURE DIVISION.
CALL "EZACICO5' USING IN-BUFFER LENGTH. IF RETURN-CODE > 0
THEN

DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 168. EZACICO5 call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249 |

IN-BUFFER
A buffer that contains the following:
* When called — ASCII data
* Upon return — EBCDIC data

LENGTH
Specifies the length of the data to be translated.

EZACIC06 program

The SELECT call uses bit strings to specify the sockets to test and to return the
results of the test. Because bit strings are difficult to manage in COBOL, use the
EZACICO06 utility program to translate bit strings to character strings to be used
with the SELECT or SELECTEX call.

[Figure 169 on page 401| shows an example of EZACICO06 call instructions.

400 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING STORAGE

01

01

01

01

01

CHAR-MASK.

05 CHAR-STRING PIC X(nn).

CHAR-ARRAY REDEFINES CHAR-MASK.

05 CHAR-ENTRY-TABLE OCCURS nn TIMES.
10 CHAR-ENTRY PIC X(1).

BIT-MASK.

05 BIT-ARRAY-FWDS OCCURS (nn+31)/32 TIMES.
10 BIT_ARRAY WORD PIC 9(8) COMP.

BIT-FUNCTION-CODES.

05 CTOB PIC X(4) VALUE 'CTOB'.

05 BTOC PIC X(4) VALUE 'BTOC'.

CHAR-MASK-LENGTH PIC 9(8) COMP VALUE nn.

PROCEDURE CALL (to convert from character to binary)

CALL 'EZACICO6' USING CTOB
BIT-MASK
CHAR-MASK
CHAR-MASK-LENGTH
RETCODE.

PROCEDURE CALL (to convert from binary to character)

CALL 'EZACICO6' USING BTOC
BIT-MASK
CHAR-MASK
CHAR-MASK-LENGTH
RETCODE.

Figure 169. EZACICO6 call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

CHAR-MASK

Specifies the character array where nn is the maximum number of sockets
in the array. The first character in the array represents socket 0, the second
represents socket 1, and so on. Keep in mind that the index is 1 greater
than the socket number. That is, CHAR-ENTRY(1) represents socket 0,
CHAR-ENTRY(2) represents socket 1, and so on.

BIT-MASK

Specifies the bit string to be translated for the SELECT call. Within each
fullword of the bit string, the bits are ordered right to left. The rightmost
bit in the first fullword represents socket 0 and the leftmost bit represents
socket 31. The rightmost bit in the second fullword represents socket 32
and the leftmost bit represents socket 63. The number of fullwords in the
bit string should be calculated by dividing the sum of 31 and the character
array length by 32 (truncate the remainder).

COMMAND

BTOC—Specifies bit string to character array translation.

CTOB—Specifies character array to bit string translation.

CHAR-MASK-LENGTH

Specifies the length of the character array. This field should be no greater
than 1 plus the MAXSNO value returned on the INITAPI (which is usually
the same as the MAXSOC value specified on the INITAPI).

RETCODE

A binary field that returns one of the following:

Value Description

Chapter 8. Sockets extended API 401

402

0 Successful call

-1 Check ERRNO for an error code
Examples

If you want to use the SELECT call to test sockets 0, 5, and 32, and you are using a
character array to represent the sockets, you must set the appropriate characters in
the character array to 1. In the following example, index position 1, 6, and 33 in
the character array are set to 1. Then you can call EZACIC06 with the COMMAND
parameter set to CTOB.

When EZACICO06 returns, the first fullword of BIT-MASK contains
B'00000000000000000000000000100001" to indicate that sockets 0 and 5 are checked.
The second word of BIT-MASK contains B'00000000000000000000000000000001" to
indicate that socket 32 is checked. These instructions process the bit string shown
in the following example:
MOVE ZEROS TO CHAR-STRING.

MOVE '1' TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(33).

CALL 'EZACICO6' USING TOKEN CTOB BIT-MASK CH-MASK

CHAR-MASK-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket
activity, enter the following instructions.
MOVE TO BIT-MASK.
CALL "EZACICO6' USING TOKEN BTOC BIT-MASK CH-MASK
CHAR-MASK-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX
FROM 1 BY 1 UNTIL IDX EQUAL CHAR-MASK-LENGTH.
TEST-SOCKET.
IF CHAR-ENTRY(IDX) EQUAL '1'
THEN PERFORM SOCKET-RESPONSE THRU
SOCKET-RESPONSE-EXIT
ELSE NEXT SENTENCE.
TEST-SOCKET-EXIT.
EXIT.

EZACICO08 program

The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket
calls that return a structure known as HOSTENT. A given TCP/IP stacks host can
have multiple alias names and host Internet addresses.

TCP/IP stacks uses indirect addressing to connect the variable number of alias
names and Internet addresses in the HOSTENT structure that is returned by the
GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or Assembler language, the HOSTENT structure can be
processed in a relatively straightforward manner. However, if you are coding in
COBOL, HOSTENT can be more difficult to process and you should use the
EZACICO08 subroutine to process it for you.

It works as follows:

* GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that
indirectly addresses the lists of alias names and Internet addresses.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

¢ Upon return from GETHOSTBYADDR or GETHOSTBYNAME your program
calls EZACICO8 and passes it the address of the HOSTENT structure. EZACIC08
processes the structure and returns the following:

1. The length of host name, if present

The host name

The number of alias names for the host

The alias name sequence number

The length of the alias name

The alias name

The host Internet address type, always 2 for AF_INET
The host Internet address length, always 4 for AF_INET
9. The number of host Internet addresses for this host

© N Ok ODN

10. The host Internet address sequence number
11. The host Internet address

 If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one
alias name or host Internet address (steps 3 and 9 in this topic), the application
program should repeat the call to EZACICO08 until all alias names and host
Internet addresses have been retrieved.

shows an example of EZACICO8 call instructions.

WORKING-STORAGE SECTION.

01 HOSTENT-ADDR PIC 9(8) BINARY.
01 HOSTNAME-LENGTH PIC 9(4) BINARY.
01 HOSTNAME-VALUE PIC X(255).

01 HOSTALIAS-COUNT PIC 9(4) BINARY.
01 HOSTALIAS-SEQ PIC 9(4) BINARY.
01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
01 HOSTALIAS-VALUE PIC X(255).

01 HOSTADDR-TYPE PIC 9(4) BINARY.
01 HOSTADDR-LENGTH PIC 9(4) BINARY.
01 HOSTADDR-COUNT PIC 9(4) BINARY.

01 HOSTADDR-SEQ PIC 9(4) BINARY.
01 HOSTADDR-VALUE PIC 9(8) BINARY.
01 RETURN-CODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

CALL 'EZASOKET' USING 'GETHOSTBYADDR'
HOSTADDR HOSTENT-ADDR
RETCODE.

CALL 'EZASOKET' USING 'GETHOSTBYNAME'
NAMELEN NAME HOSTENT-ADDR
RETCODE.

CALL "EZACICO8' USING HOSTENT-ADDR HOSTNAME-LENGTH
HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
HOSTALIAS-LENGTH HOSTALIAS-VALUE
HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

Figure 170. EZAZICO8 call instruction example

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application

Chapter 8. Sockets extended API 403

404

HOSTENT-ADDR
This fullword binary field must contain the address of the HOSTENT
structure (as returned by the GETHOSTBYxxxx call). This variable is the
same as the variable HOSTENT in the GETHOSTBYADDR and
GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACICO08 to index the list of alias names.
When EZACICO08 is called, it adds one to the current value of
HOSTALIAS-SEQ and uses the resulting value to index into the table of
alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACICO08. For all subsequent calls
to EZACICOS, this field should contain the HOSTALIAS-SEQ number
returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACICO8 to index the list of IP addresses.
When EZACICO08 is called, it adds one to the current value of
HOSTADDR-SEQ and uses the resulting value to index into the table of IP
addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACICO08. For all subsequent calls
to EZACICO08, this field should contain the HOSTADDR-SEQ number
returned by the previous call.

Parameter values returned to the application

HOSTNAME-LENGTH
This halfword binary field contains the length of the host name (if host
name was returned).

HOSTNAME-VALUE
This 255-byte character string contains the host name (if host name was
returned).

HOSTALIAS-COUNT
This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ
This halfword binary field is the sequence number of the alias name
currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently
found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this
instance of the call. The length of the alias name is contained in
HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY
type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host Internet address
currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,
HOSTADDR-LENGTH is always set to 4.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

HOSTADDR-COUNT
This halfword binary field contains the number of host Internet addresses
returned by this instance of the call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host
Internet address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host Internet address.

RETURN-CODE
This fullword binary field contains the EZACICO08 return code:

Value Description

0 Successful completion

-1 Invalid HOSTENT address

-2 Invalid HOSTALIAS-SEQ value
-3 Invalid HOSTADDR-SEQ value

EZACIC09 program

The GETADDRINFO call was derived from the C socket call that returns a
structure known as RES. A given TCP/IP stacks host can have multiple sets of
NAMES. TCP/IP stacks uses indirect addressing to connect the variable number of
NAMES in the RES structure that the GETADDRINFO call returns. If you are
coding in PL/I or Assembler language, the RES structure can be processed in a
relatively straightforward manner. However, if you are coding in COBOL, RES can
be more difficult to process and you should use the EZACIC09 subroutine to
process it for you. It works as follows:

* GETADDRINFO returns a RES structure that indirectly addresses the lists of
socket address structures.

* Upon return from GETADDRINFO, your program calls EZACIC09 and passes it
the address of the next address information structure as referenced by the NEXT
argument. EZACICO09 processes the structure and returns the following;:

1. The socket address structure
2. The next address information structure
e If the GETADDRINFO call returns more than one socket address structure, the

application program should repeat the call to EZACIC(09 until all socket address
structures have been retrieved.

[Figure 171 on page 407 shows an example of EZACICQ9 call instructions.

Chapter 8. Sockets extended API 405

406 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.

*

* Variables used for the GETADDRINFO call

*

01 get
02
02
02
02

*

addrinfo-parms.
node-name
node-name-len
service-name
service-name-len
canonical-name-Ten
ai-passive
ai-canonnameok
ai-numerichost
ai-numericserv
ai-vé4mapped
ai-all
ai-addrconfig

pic x(255).

pic 9(8) binary.

pic x(32).

pic 9(8) binary.

pic 9(8) binary.

pic 9(8) binary value 1.
pic 9(8) binary value 2.
pic 9(8) binary value 4.
pic 9(8) binary value 8.
pic 9(8) binary value 16.
pic 9(8) binary value 32.
pic 9(8) binary value 64.

* Variables used for the EZACICO09 call

*

01 eza
02
02
02
02
02

*

* Socket

*

cic09-parms.
res
res-name-len
res-canonical-name
res-name
res-next-addrinfo

address structure

01 server-socket-address.

05
05
05
05

05

LINKAGE

01 LI1.
03

03
03

*

* RESULT
*
01 RES
05
05
05

server-family
server-port
server-flowinfo
server-ipaddr.
10 filler

10 filler
server-scopeid

SECTION.

HINTS-ADDRINFO.

05 HINTS-AI-FLAGS

05 HINTS-AI-FAMILY
05 HINTS-AI-SOCKTYPE
05 HINTS-AI-PROTOCOL
05 FILLER

05 FILLER

05 FILLER

05 FILLER
HINTS-ADDRINFO-PTR
RES-ADDRINFO-PTR

S ADDRESS INFO

ULTS-ADDRINFO.
RESULTS-AI-FLAGS
RESULTS-AI-FAMILY
RESULTS-AI-SOCKTYPE
RESULTS-AI-PROTOCOL
RESULTS-AI-ADDR-LEN

RESULTS-AI-CANONICAL-NAME

RESULTS-AI-ADDR-PTR
RESULTS-AI-NEXT-PTR

usage is pointer.
pic 9(8) binary.
pic x(256).

usage is pointer.
usage is pointer.

pic 9(4) Binary Value 19.
pic 9(4) Binary Value 9997.
pic 9(8) Binary Value 0.

pic 9(16) binary value 0.
pic 9(16) binary value 0.
pic 9(8) Binary Value 0.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
USAGE IS POINTER.
USAGE IS POINTER.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
PIC 9(8) BINARY.
USAGE IS POINTER.
USAGE IS POINTER.
USAGE IS POINTER.

Figure 171. EZACICO09 call instruction example (Part 1 of 2)

Chapter 8. Sockets extended API

407

*

* SOCKET ADDRESS STRUCTURE FROM EZACICO9.

*

01 OUTPUT-NAME-PTR USAGE IS POINTER.
01 OUTPUT-IP-NAME.
03 OUTPUT-IP-FAMILY PIC 9(4) BINARY.
03 OUTPUT-IP-PORT PIC 9(4) BINARY.
03 OUTPUT-IP-SOCK-DATA PIC X(24).

03 OUTPUT-IPV4-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
05 OUTPUT-IPV4-IPADDR PIC 9(8) BINARY.
05 FILLER PIC X(20).
03 OUTPUT-IPV6-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
05 OUTPUT-IPV6-FLOWINFO PIC 9(8) BINARY.
05 OUTPUT-IPV6-IPADDR.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
05 OUTPUT-IPV6-SCOPEID PIC 9(8) BINARY.

PROCEDURE DIVISION USING L1.

*

* Get an address from the resolver.
*
move 'yournodename' to node-name.
move 12 to node-name-len.
move spaces to service-name.
move 0 to service-name-len.
move af-inet6 to hints-ai-family.
move 49 to hints-ai-flags
move 0 to hints-ai-socktype.
move 0 to hints-ai-protocol.
set address of results-addrinfo to res-addrinfo-ptr.
set hints-addrinfo-ptr to address of hints-addrinfo.
call 'EZASOKET' using soket-getaddrinfo
node-name node-name-1len
service-name service-name-len
hints-addrinfo-ptr
res-addrinfo-ptr
canonical-name-Ten
errno retcode.
*

* Use EZACICO9 to extract the IP address
*
set address of results-addrinfo to res-addrinfo-ptr.
set res to address of results-addrinfo.
move zeros to res-name-len.
move spaces to res-canonical-name.
set res-name to nulls.
set res-next-addrinfo to nulls.
call 'EZACICO9' using res
res-name-len
res-canonical-name
res-name
res-next-addrinfo
retcode.
set address of output-ip-name to res-name.
move output-ipv6-ipaddr to server-ipaddr.

Figure 172. EZACICO09 call instruction example (Part 2 of 2)

For equivalent PL/I and assembler language declarations, see
[parameter descriptions” on page 249

Parameter values set by the application

408 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

RES This fullword binary field must contain the address of the ADDRINFO
structure (as returned by the GETADDRINFO call). This variable is the
same as the RES variable in the GETADDRINFO socket call.

RES-NAME-LEN
A fullword binary field that contains the length of the socket address
structure as returned by the GETADDRINFO call.

Parameter values returned to the application

RES-CANONICAL-NAME
A field large enough to hold the canonical name. The maximum field size
is 256 bytes. The canonical name length field indicates the length of the
canonical name as returned by the GETADDRINFO call.

RES-NAME
The address of the subsequent socket address structure.

RES-NEXT
The address of the next address information structure.

RETURN-CODE
This fullword binary field contains the EZACIC09 return code:

Value Description
0 Successful completion

-1 Invalid HOSTENT address
EZACIC14 program

The EZACIC14 program is an alternative to EZACIC04, which is used to translate
EBCDIC data to ASCII data.

[Figure 173 on page 410| shows an example of how EZACIC14 translates a byte of
EBCDIC data.

Chapter 8. Sockets extended API 409

ASCII second hex digit of byte of EBCDIC data
output by |------mmmm e
EZACIC14 ol 1] 2| 3| 4| 5| 6| 7| 8] 9] Al B] c| D] E| F
B i Kt Elait s s S el e R e e e e e o T
0 |e0|01]02|03]|9C|09|86|7F|97|8D|8E|0OB|OC|0OD|OE|OF
B e e D it i e L R R e e e e Tl T
1 |10]11]12]13|9D|85|08|87|18|19|92|8F|1C|1D|1E|1F
Pt P R LT U RUpE RS R YR P
2 |80|81|82|83|84|0A|17|1B|88|89|8A|8B|8C|05|06]07
B e S e e e s e e Tl S et e ol Ll
3 190]91|16/93]|94|95|96|04]|98|99|9A|9B]14|15|9E|1A
B e S R e e D e e o ol o et e Tl LD e
4 |20|A0|E2|E4|EO|E1|E3|E5|E7|F1|A2|2E|3C|28]|2B]|7C
B e S e e e o R e e i S e s s Tk Ll e
5 |26|E9|EA|EB|ES|ED|EE|EF|EC|DF|21|24]|2A|29|3B|5E
B e e S e e o kT
first | 6 |2D|2F|c2|c4|co|c1|c3|c5|C7|D1|A6]|2C|25]|5F|3E|3F

hex T T T e S e T i e Tl TS PR
digit | 7 |F8|C9|CA|CB|C8|CD|CE|CF|CC|60|3A|23|40]|27|3D|22
of R e T T T e e T et abt ETE TS R S
byte 8 |D8|61|62|63|64|65|66|67|68]|69|AB|BB|FO|FD|FE|B1
of P Tt PR S LT U RUpE R R YR P
EBCDIC | 9 |BO|6A|6B|6C|6D|6E|6F|70]|71|72|AA|BA|E6|BS|CE|AL
data B e e e T S e T e S e e e etk T ED P P P

A |B5|7E|73|74|75]|76|77|78|79|7A|A1|BF|DO|5B]|DE|AE
B e S e e e L e e e e e s Tl Ll e
B |AC|A3|A5|B7|A9|A7|B6|BC|BD|BE|DD|A8|AF|5D|B4|D7
B e e S e e e e o T e e s T
C |7B|41|42|43|44]45|46]|47|48|49|AD|F4|F6|F2|F3|F5
B e e e et e i s Tl Sl Sl el e e o T
D |7D|4A|4B|4C|4D|4E|4F|50|51]|52|B9|FB|FC|F9|FA|FF
B e e It e e e e el el e R el T Tl SR, (P
E |5C|F7|53|54|55|56|57]58|59|5A|B2|D4|D6|D2|D3|D5
B e e D it ks Ll L R e S e e el Tl (R S
F |30]|31]32|33|34|35|36|37|38|39|B3|DB|DC|D9|DA|9F

Figure 173. EZACIC14 EBCDIC-to-ASCII table

[Figure 174 on page 411| shows an example of EZACIC14 call instructions.

410 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
01 OUT-BUFFER PIC X(length of output).
01 LENGTH PIC 9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZACIC14' USING OUT-BUFFER LENGTH.
IF RETURN-CODE > 0
THEN
DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 174. EZACIC14 call instruction example
For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

OUT-BUFFER
A buffer that contains the following:

* When called - EBCDIC data
¢ Upon return — ASCII data

LENGTH
Specifies the length of the data to be translated.

EZACIC15 program

The EZACIC15 program is an alternative to EZACICO05 which is used to translate
ASCII data to EBCDIC data.

[Figure 175 on page 412 shows an example of how EZACIC15 translates a byte of
ASCII data.

Chapter 8. Sockets extended API ~ 411

EBCDIC second hex digit of byte of ASCII data
output by |------mmmm e
EZACIC15 ol 1] 2| 3| 4| 5| 6| 7| 8] 9] Al B] c| D] E| F
B i Kt Elait s s S el e R e e e e e o T
0 |00|01]02|03]|37|2D|2E|2F|16|05|25|0B|0C|0D|OE|OF
B e e D it i e L R R e e e e Tl T
1 |10]11]12]13|3C|3D|32|26|18|19|3F|27|1C|1D|1E|1F
Pt P R LT U RUpE RS R YR P
2 |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|4B|61
B e S e e e s e e Tl S et e ol Ll
3 |Fo|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F
B e S R e e D e e o ol o et e Tl LD e
4 |7c|c1|cz|c3|ca|cs|c6|c7|c8]|co|Dp1|D2|D3|D4|D5|D6
B e S e e e o R e e i S e s s Tk Ll e
5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|EQ|BD|5F|6D
B e e S e e o kT
first | 6 |79|81|82|83|84]85|86|87|88|89]|91|92|93]94|95]|96

hex B T b T e R R s T e e
digit | 7 |97]|98|99|A2|A3|A4|A5|A6|A7|A8|A9|CO|4F|DO|AL|07
of B b T T R Lt Tt (T TRNE TS PP P
byte 8 |20|21]22|23|24|15|06|17|28|29|2A|2B|2C|09|0A|1B
of P Tt PR S LT U RUpE R R YR P
ASCIT | 9 |30|31|1A|33]34|35|36]08|38|39|3A|3B|04|14|3E|FF
data B L Tt T e e R e R alak Tk ETST BT JEPNE Py

A |41|AA|4A|B1|9F|B2|6A|B5|BB|B4|9A|8A|BO|CA|AF|BC
B e S e e e L e e e e e s Tl Ll e
B |90|8F|EA|FA|BE|AO|B6|B3|9D|DA|9B|8B|B7|B8|B9|A9
B e e S e e e e o T e e s T
C |64|65|62|66|63]|67|9€E|68|74|71|72|73|78|75|76|77
B e e e et e i s Tl Sl Sl el e e o T
D |AC|69|ED|EE|EB|EF|EC|BF|80|FD|FE|FB|FC|BA|AE|59
B e e It e e e e el el e R el T Tl SR, (P
E |44|45|42|46]43|47]|9C|48]|54|51]|52|53|58|55]|56]|57
B e e D it ks Ll L R e S e e el Tl (R S
F |8C|49|CD|CE|CB|CF|CC|EL]|70|DD|DE|DB|DC|8D|8E|DF

Figure 175. EZACIC15 ASCII-to-EBCDIC table

[Figure 176 on page 413|shows an example of EZACIC15 call instructions.

412 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

WORKING-STORAGE SECTION.
01 OUT-BUFFER PIC X(length of output).

01 LENGTH PIC 9(8) BINARY.
PROCEDURE DIVISION.
CALL 'EZACIC15' USING OUT-BUFFER LENGTH. IF RETURN-CODE > 0
THEN

DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 176. EZACIC15 call instruction example

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 249

OUT-BUFFER
A buffer that contains the following:

* When called — ASCII data
* Upon return — EBCDIC data

LENGTH
Specifies the length of the data to be translated.

Chapter 8. Sockets extended API 413

414 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Appendix A. Original COBOL application programming
interface (EZACICAL)

The EZACICAL does not formally support IPv6 and it is not a recommended APL

This topic describes the first COBOL API provided with TCP/IP Version 2.2.1 for
MVS. It is referred to as the EZACICAL API to distinguish it from the Sockets
Extended API. (EZACICAL is the routine that is called for this API.)

It gives the format of each socket call and describes the call parameters. It starts
with guidance on compiling COBOL programs.

Using the EZACICAL or Sockets Extended API

The EZACICAL API (described in this topic) and the Sockets Extended API
(described in [Chapter 8, “Sockets extended API,” on page 245) both provide
sockets APIs for COBOL, PL/I, and Assembler language programs.

The Sockets Extended API is recommended because it has a simpler set of
parameters for each call.

You might want to use the EZACICAL API if you have existing TCP/IP Version
2.2.1. for MVS COBOL/assembler language programs that require maintenance or
modification.

COBOL compilation

The procedure that you use to compile a (non-CICS TCP/IP) source VS COBOL II
CICS program can be used for CICS TCP/IP programs, but it needs some
modification.

The modified JCL procedure is shown in [Figure 177 on page 416 The procedure
contains 3 steps:

1. TRN translates the COBOL program
2. COB compiles the translated COBOL program
3. LKED link-edits the final module to a LOADLIB

© Copyright IBM Corp. 2000, 2015 415

//CICSRS2C JOB (999,POK),'CICSRS2',NOTIFY=CICSRS2,
// CLASS=A,MSGCLASS=T,TIME=1439,

// REGION=5000K,MSGLEVEL=(1,1)

//DFHEITVL PROC SUFFIX=1$,

// INDEX="'CICS410',

// INDEX2="'CICS410"',

// OUTC=~,

// REG=2048K,

// LNKPARM="LIST,XREF",

// WORK=SYSDA

//TRN EXEC PGM=DFHECP&SUFFIX,
// PARM='COBOL2",

// REGION=®

//STEPLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&0UTC
//SYSPUNCH DD DSN=8&SYSCIN,

// DISP=(,PASS),UNIT=&WORK,

// DCB=BLKSIZE=400,

// SPACE=(400, (400,100))

/1%

//COB EXEC PGM=IGYCRCTL,REGION=®,

// PARM="NODYNAM, LIB,0BJECT,RENT,RES,APOST ,MAP, XREF'

//STEPLIB DD DSN=COBOL.V1R3M2.COB2COMP,DISP=SHR
//SYSLIB DD DSN=&INDEX..SDFHCOB,DISP=SHR

// DD DSN=&INDEX..SDFHMAC,DISP=SHR

/! DD DSN=CICSRS2.MAPA.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=&0UTC

//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=8&LOADSET,DISP=(MOD, PASS),
/] UNIT=&WORK, SPACE= (80, (250,100))
//SYSUTL DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT2 DD UNIT=8WORK,SPACE=(460, (350,100))
//SYSUT3 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT4 DD UNIT=8WORK,SPACE=(460, (350,100))
//SYSUTS DD UNIT=&WORK,SPACE= (460, (350,100))
//SYSUT6 DD UNIT=&WORK,SPACE= (460, (350,100))
//SYSUT7 DD UNIT=&WORK,SPACE= (460, (350,100))
/1*

/1%

//LKED EXEC PGM=IEWL,REGION=®,

// PARM="'&LNKPARM' ,COND=(5,LT,COB)
//SYSLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR

// DD DSN=SYS1.COBOL.V1R3M2.COB2CICS,DISP=SHR
// DD DSN=COBOL.V1R3M2.COB2LIB,DISP=SHR

// DD DSN=h1q.SEZATCP,DISP=SHR

//SYSLMOD DD DSN=CICSRS2.CICS410.PGMLIB,DISP=SHR
//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,

// SPACE=(1024, (200,20))
//SYSPRINT DD SYSOUT=&0UTC

/1%

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
/1 DD DDNAME=SYSIN

/! PEND

//APPLPROG EXEC DFHEITVL
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS2.JCL.DATA(SISSRR1C)
//LKED.SYSIN DD =
INCLUDE SYSLIB(EZACICAL)
NAME SISSRRIC(R)
/*

Figure 177. Modified JCL for COBOL compilation

416 z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

The EZACICAL API

The EZACICAL API can be used by assembler language, COBOL, or PL/I
programs and is invoked by calling the EZACICAL routine. Although the calls to
this routine perform the same function as the C language calls described in
[Chapter 7, “C language application programming,” on page 165 the parameters
are presented differently because of the differences in the languages. The
equivalent to the return code provided by all C function calls is found in a decimal
value parameter included as the last parameter variable.

EZACICAL call format for COBOL
The following is the EZACICAL call format for COBOL:

»»>—CALL "EZACICAL' USING TOKEN COMMAND—parml, parm2, ...—ERRNO RETCODE.————— >«
TOKEN

A 16-character field with the value "TCPIPIUCVSTREAMS'
COMMAND

A halfword binary value from 1 to 32, identifying the socket call.

parmn The parameters particular to each socket call. For example, BIND,
described in [“COBOL call for BIND” on page 420|has two such
parameters: S (socket), which is a halfword binary value, and NAME,
which is a structure specifying a port name.

ERRNO
There is an error number in this field if the RETCODE is negative. This
field is used in most, but not all, of the calls. It corresponds to the global
errno variable in C.

RETCODE
A fullword binary variable containing the code returned by the EZACICAL
call. This value corresponds to the normal return value of a C function.

EZACICAL call format for PL/I
The following is the EZACICAL call format for PL/I:

Appendix A. Original COBOL application programming interface (EZACICAL) 417

»>—CALL EZACICAL (TOKEN COMMAND—parml, parm2, ...—ERRNO RETCODE);

v
A

TOKEN
A 16-character field with the value "TCPIPIUCVSTREAMS'

COMMAND
A halfword binary value from 1 to 32, identifying the socket call.

parmn The parameters particular to each socket call. For example, BIND,
described in [“COBOL call for BIND” on page 420, has two such
parameters: S (socket), which is a halfword binary value, and NAME,
which is a structure specifying a port name.

ERRNO
There is an error number in this field if the RETCODE is negative. This
field is used in most, but not all, of the calls. It corresponds to the global
errno variable in C.

RETCODE
A fullword binary variable containing the code returned by the EZACICAL
call. This value corresponds to the normal return value of a C function.

EZACICAL call format for assembler language
The following is the EZACICAL call format for assembler language:

»»>—CALL EZACICAL, (TOKEN,COMMAND,—parml, parm?, ...—ERRNO RETCODE),VL———— >«

The parameter descriptions in this topic are written using the COBOL language
syntax and conventions. For assembler language, use the following conversions:

COBOL PIC
PIC S9(4) COMP HALFWORD BINARY VALUE
PIC S9(8) COMP FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

COBOL and assembler language socket calls
The remainder of this topic describes the EZACICAL API call formats.

The descriptions assume you are using VS COBOL II. If you are using an earlier
version, the picture clauses should read COMP rather than BINARY.

The following abbreviations are used:

H Halfword
F Fullword
D Doubleword

CLn Character format, length n bytes
XLn Hexadecimal format, length n bytes

418 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

COBOL call for ACCEPT

This call functions in the same way as the equivalent call described [“ACCEPT call”
The format of the COBOL call for ACCEPT is:

CALL 'EZACICAL' USING TOKEN COMMAND S ZERO-FWRD NEW-S NAME ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
lassembler language” on page 418).

Parameter lengths in assembler language and COBOL for

ACCEPT

Assembler
Assembler language language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
ZERO-FWRD F PIC 9(8) BINARY
NEW-S F PIC S9(8) BINARY

NAME STRUCTURE:

Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for ACCEPT

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 1 for the ACCEPT command

S The descriptor of the local socket on which the connection is accepted

ZERO-FWRD
Set to zeros

NEW-S
Set to -1. The system returns the socket number in the RETCODE field.

Note: Be sure to use only the socket number returned by the system.

Parameter values returned to the application for ACCEPT

NAME
Structure giving the name of the port to which the new socket is connected

Internet Family
AF-INET is always returned

Port The port address of the new socket

Internet Address
The IP address of the new socket

Zeros Set to binary zeros or LOW VALUES

Appendix A. Original COBOL application programming interface (EZACICAL) 419

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in[Appendix B, “Return codes,” on page 449 |

RETCODE
The socket number for new socket is returned. A RETCODE of -1 indicates
an error.

COBOL call for BIND

This call functions in the same way as the equivalent call described in [“BIND call”
The format of the COBOL call for the BIND function is:

CALL 'EZACICAL' USING TOKEN COMMAND S NAME ERRNO RETCODE.

420

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for BIND

Assembler
Parameter language = COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for BIND

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 2 for the BIND command

S The descriptor of the local socket to be bound

NAME
Structure giving the name of the port to which the socket is to be bound,
consisting of:

Internet Family
Must be set to 2 (AF-INET)

Port The local port address to which the socket is to be bound

Internet Address
The local IP address to which the socket is to be bound

Zeros Set to binary zeros or low values

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

Parameter values returned to the application for BIND
NAME (Port)
If Port was set to 0, the system returns an available port.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in[Appendix B, “Return codes,” on page 449 |

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

COBOL call for CLOSE

This call functions in the same way as the equivalent call described in [*CLOSE
[call” on page 258 | The format of the COBOL call for the CLOSE function is:

CALL 'EZACICAL' USING TOKEN COMMAND S DZERO ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for CLOSE

Assembler
Parameter language = COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)
ERRNO F PIC S9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for CLOSE

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 3 for the CLOSE command

S The descriptor of the socket to be closed

DZERO
Set to binary zeros or low values

Parameter values returned to the application for CLOSE

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in [Appendix B, “Return codes,” on page 449

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

COBOL call for CONNECT

This call functions in the same way as the equivalent call described in|"CONNEC
[call” on page 260| The format of the COBOL call for the CONNECT function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 421

CALL 'EZACICAL' USING TOKEN COMMAND S NAME ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for

CONNECT

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for CONNECT

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 4 for the CONNECT command

S The descriptor of the local socket to be used to establish a connection

NAME
Structure giving the name of the port to which the socket is to be
connected, consisting of:

Internet Family
Must be set to 2 (AF-INET)

Port The remote port number to which the socket is to be connected

Internet Address
The remote IP address to which the socket is to be connected

Zeros Set to binary zeros or low values

Parameter values returned to the application for CONNECT

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in [Appendix B, “Return codes,” on page 449 |

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

COBOL call for FCNTL

This call functions in the same way as the equivalent call described in ["FCNT
[call” on page 263 | The format of the COBOL call for the FCNTL function is:

422 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

CALL "EZACICAL' USING TOKEN COMMAND S CMD ARG ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for FCNTL

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
CMD F PIC 9(8) BINARY
ARG F PIC 9(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for FCNTL
TOKEN
Must be set to "TCPIPIUCVSTREAMS'

COMMAND
Must be set to 5 for the FCNTL command

S The socket descriptor whose FNDELAY flag is to be set or queried

CMD Set a value of 3 to query the FNDELAY flag of socket s. This is equivalent
to setting the cmd parameter to F-GETFL in the fentl() C call.

Set a value of 4 to set the FNDELAY flag of socket s. This is equivalent to
setting the cmd parameter to F-SETFL in the fentl() C call.

ARG If CMD is set to 4, setting ARG to 4 sets the FNDELAY flag; setting ARG
to 3 resets the FNDELAY flag.

Parameter values returned to the application for FCNTL

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in [Appendix B, “Return codes,” on page 449

RETCODE
If CMD was set to 3, a bit mask is returned. If CMD was set to 4, a
successful call is indicated by 0 in this field. In both cases, a RETCODE of
-1 indicates an error.

COBOL call for GETCLIENTID

This call functions in the same way as the equivalent call described in
[“GETCLIENTID call” on page 275| The format of the COBOL call for the
GETCLIENTID function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 423

CALL 'EZACICAL' USING TOKEN COMMAND HZERO DZERO CLIENTID ERRNO RETCODE.

424

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for
GETCLIENTID

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
DZERO D PIC X(8)
CLIENTID STRUCTURE:
Domain F PIC 9(8) BINARY
Name CL8 PIC X(8)
Task CL8 PIC X(8)
Reserved X120 PIC X(20)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for GETCLIENTID

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 30 for the GETCLIENTID command

HZERO
Set to binary zeros or LOW VALUES

DZERO
Set to binary zeros or LOW VALUES

CLIENTID
Domain
Must be set to 2 (AF-INET)
Parameter values returned to the application for GETCLIENTID

CLIENTID
Structure identifying the client as follows:

Name Address space identification is returned
Task Task identification is returned

Reserved
Zeros or LOW VALUES are returned

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in[Appendix B, “Return codes,” on page 449 |

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

z/0S V2R2.0 Communications Server: IP CICS Sockets Guide

COBOL call for GETHOSTID

This call functions in the same way as the equivalent call described in
["GETHOSTBYADDR call” on page 277 The format of the COBOL call for the
GETHOSTID function is:

CALL 'EZACICAL' USING TOKEN COMMAND HZERO DZERO ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
lassembler language” on page 418).

Parameter lengths in assembler language and COBOL for

GETHOSTID

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
DZERO D PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for GETHOSTID
TOKEN
Must be set to "TCPIPIUCVSTREAMS'

COMMAND
Must be set to 7 for the GETHOSTID command

HZERO
Set to binary zeros or low values

DZERO
Set to binary zeros or low values

Parameter values returned to the application for GETHOSTID
ERRNO
This field is not used

RETCODE
Returns a fullword binary field containing the 32-bit Internet address of the
host. A value of -1 is a call failure, probably indicating that an INITAPI call
has not been issued. There is no ERRNO parameter for this call.

COBOL call for GETHOSTNAME

This call functions in the same way as the equivalent call described in
[‘'GETHOSTBYNAME call” on page 280.|

Note: The host name returned is the host name the TCPIP stack learned at startup
from the TCPIP.DATA file that was found. For more information about hostname,
see [HOSTNAME statement] in [z/OS Communications Server: IP Configuration|

|[3eferencel

The format of the COBOL call for the GETHOSTNAME function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 425

CALL 'EZACICAL' USING TOKEN COMMAND HZERO DZERO NAMELEN NAME ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for

GETHOSTNAME

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
DZERO D PIC X(8)
NAMELEN F PIC 9(8) BINARY
NAME NAMELEN NAMELEN or larger

or larger

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for
GETHOSTNAME

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 8 for the GETHOSTNAME command

HZERO
Set to 0

DZERO
Set to binary zeros or low values

NAMELEN
The length of the NAME field. The minimum length of the NAME field is
1 character. The maximum length of the NAME field is 255 characters.

Parameter values returned to the application for GETHOSTNAME

NAME
The host name returned from the call. If the host name is shorter than the
NAMELEN value, then the NAME field is filled with binary zeros after the
host name. If the host name is longer than the NAMELEN value, then the
name is truncated.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in[Appendix B, “Return codes,” on page 449 |

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

COBOL call for GETPEERNAME

This call functions in the same way as the equivalent call described in
[GETPEERNAME call” on page 289 The format of the COBOL call for the
GETPEERNAME function is:

426 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

CALL "EZACICAL' USING TOKEN COMMAND S DZERO NAME ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for

GETPEERNAME

Parameter COBOL COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)

NAME CL16 PIC X(16)

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for
GETPEERNAME

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 9 for the GETPEERNAME command

S The descriptor of the local socket connected to the requested peer

DZERO
Set to binary zeros or low values

Parameter values returned to the application for GETPEERNAME
NAME
The peer name returned from the call

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in[Appendix B, “Return codes,” on page 449 |

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

COBOL call for GETSOCKNAME

This call functions in the same way as the equivalent call described in
[‘'GETSOCKNAME call” on page 291 The format of the COBOL call for the
GETSOCKNAME function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 427

CALL 'EZACICAL' USING TOKEN COMMAND S DZERO NAME ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for

GETSOCKNAME

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)
NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for
GETSOCKNAME

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 10 for the GETSOCKNAME command

S The descriptor of the local socket whose address is required

DZERO
Set to binary zeros or low values

NAME
Structure giving the name of the port to which the socket is bound,
consisting of:

Internet Family
Must be set to 2 (AF-INET).

Port The local port address to which the socket is bound

Internet Address
The local IP address to which the socket is bound

Zeros Set to binary zeros or low values

Parameter values returned to the application for GETSOCKNAME

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in[Appendix B, “Return codes,” on page 449 |

RETCODE
A return of 0 indicates a successful call. A return of -1 indicates an error.

428 2/0S V2R2.0 Communications Server: IP CICS Sockets Guide

COBOL call for GETSOCKOPT

This call functions in the same way as the equivalent call described in
[“GETSOCKOPT call” on page 293 | The format of the COBOL call for the
GETSOCKOPT function is:

CALL 'EZACICAL'
USING TOKEN COMMAND S LEVEL OPTNAME OPTLEN OPTVAL ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see ["EZACICAL call format for|
[assembler language” on page 418).

Parameter lengths in assembler language and COBOL for

GETSOCKOPT

Assembler
Parameter language COBOL
TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
LEVEL F PIC X(4)
OPTNAME F PIC X(4)
OPTLEN F PIC 9(8) BINARY
OPTVAL CL4 PIC X(4)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application for GETSOCKOPT

TOKEN
Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 11 for the GETSOCKOPT command

S The descriptor of the socket whose option settings are required

LEVEL
This must be set to X'0000FFFF'.

OPTNAME
Set this field to specify the option to be queried, as shown here. For a
description of these options, see ["GETSOCKOPT call” on page 293|

Value Meaning

X'00000004'
SO-REUSEADDR

X'00000020'
SO-BROADCAST

X'00001007'
SO-ERROR

X'00000080'
SO-LINGER

X'00000100'
SO-OOBINLINE

Appendix A. Original COBOL application programming interface (EZACICAL) 429

430

X'00001001'
SO-SNDBUF

X'00001008'
SO-TYPE

X'80000008'
TCP_KEEPALIVE

X'80000001'
TCP_NODELAY

Parameter values returned to the application for GETSOCKOPT

OPTLEN
The length of the option data

OPTVAL
The value of the option. For all options except SO-LINGER, an integer
indicates that the option is enabled, while a 0 indicates it is disabled. For
SO-LINGER, the following structure is returned:

ONOFF F PIC X(4)
LINGER F PIC 9(4)

A nonzero value of ONOFF indicates that the option is enabled, and 0, that
it is disabled. The LINGER value indicates the amount of time to linger
after close.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described